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Preface

Advanced monitoring systems for robot and security applications in locations such as
towns, houses, shops and hospitals, have become increasingly prevalent in our society. A
key goal for this type of monitoring is accurate and real-time imaging and the identification
of people using a simple sensing system. Although many studies has developed human
detection systems using optical sensors, the acquisition of adequate range resolution with
this approach is difficult. Moreover, they do not work well in difficult environments such
as low light and smoky conditions. Recently, a number of studies on human sensing, using
ultrasonics, have been reported. However, the ultrasonic devices for robust and wide-area
measurements in air are still under development and research.

To resolve these problems, human imaging systems using radar have been widely
studied because of their advantages in range resolution and robust measurements. In
particular, micro-Doppler radar and ultra wide-band (UWB) radar are attractive tech-
nologies for human motion/shape acquisition. Micro-Doppler radar can recognize the
motions of multiple targets, and can realize human tracking using interferometry. The
technique was first applied to continuous wave radar, but its resolution is inadequate for
identifying human subjects. UWB radar can reconstruct high-resolution shapes of a single
and simple-shaped target; however it is difficult to apply it to multiple complex targets
such as humans. Taking these properties into account, the combined techniques of UWB
radar, micro-Doppler radar and interferometry have great potential for high-resolution
human imaging.

In the present study, human imaging and identification algorithms are proposed with
this combined technique, termed UWB Doppler radar interferometry. First, a high-
resolution imaging algorithm for multiple moving targets is introduced, and its per-
formance is investigated using numerical simulations and experiments assuming a few
revolving targets and numerical human model. These investigations verify that UWB
Doppler radar interferometry composed of three receiving antennas can realize separation
of multiple targets, and accurate imaging of each separated target. However, many false
images are generated because of interference from multiple targets such as various parts
of the body, and this leads to incorrect extraction of humans. To resolve this problem,
the mechanism for this type of false image is clarified, and false image detection and
rejection algorithms using velocity information are proposed. Experiments which assume
a variety of pedestrian targets in a realistic situation show that the proposed imaging
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algorithm achieves high-resolution and reliable human imaging in real-time. Moreover,
applications to humans walking in various directions are carried out and the effectiveness
of the algorithm is established.

Next, two human identification algorithms are proposed based on human shape/motion
information obtained using the proposed imaging algorithm with UWB Doppler radar
interferometry. One of the proposed algorithms is a classification algorithm for various
pedestrian types. The proposed classification algorithm uses feature parameters extracted
from the silhouette and radial velocity distributions of the UWB Doppler radar images.
This classification algorithm realizes accurate classification of a variety of motion types
such as pedestrians with both arms swinging, pedestrians carrying a bag and swinging one
arm, and those on crutches or in wheelchairs. Another algorithm separates images of two
closely spaced pedestrian targets. The proposed separation algorithm applies the support
vector machine to the estimated human images. The performance evaluations with ex-
periments in a realistic environment verify that these proposed identification algorithms
accomplish accurate classification/separation in real-time processing.
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Chapter 1

General Introduction

1.1 Introduction

The use of intelligent robots such as household, nursing, and rescue robots will become
widespread in the near future thanks to technological advances in recent years [1–3]. On
the other hand, the security situation of the society has deteriorated since the start of the
21st century [4], and the importance of security technology to protect people from crime
and terrorism is increasing.

For these reasons, surveillance and monitoring systems in locations such as towns,
houses, shops and hospitals are ubiquitous in today’s society. Such systems need to
be able to sense people and other objects. For instance, the automatic and real-time
identification of intruders is a promising application in surveillance systems. Here, the
word ”identification” means the clarification of what the detected target actually is. For
example, is the detected target a human or a dog? If the target is human, is the person
an intruder? Can the motion, location, figure, and other individual features of the person
be detected? The ability to extract such information from the sensing data is required.
Furthermore, moving robots must be able to locate and specify various objects to avoid
collisions or to identify targets. For these purposes, a simple monitoring system, which
can realize accurate imaging and target identification, is essential in robots.

Although various sensing targets can be considered, this thesis focuses on sensing
humans which is the most important problem for intelligent monitoring systems. The
properties required to human monitoring systems are summarized as follows:

• Non-contact sensing: Monitoring of a wide area should be realized by fixed sen-
sors or sensors embedded in robots.

• Real-time capability: If there are intruders or obstacles, the system must identify
them immediately.

• Simple system: Physical packaging should be as small as possible.
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• Robustness: Sensors should be able to work in difficult environments (e.g., in the
existence of many obstacles, low-light conditions, and smoky environments).

• Complex target determination: Sensors should be able to discern multiple
complex-shaped targets such as the human shape.

• High-resolution imaging of shape/motion: Detailed shape/motion information
should be effective for human identification.

A large number of studies on the development of non-contact human sensing systems were
based on wave propagation. Although many researchers have developed human detection
and identification systems using optical sensors such as cameras and lasers, the acquisition
of adequate range resolution is difficult. Moreover, they do not work well in environments
such as low light and smoky conditions. Ultrasound imaging has been applied in medical
and biological fields, but there is little research on identifying human images in free space.

Radar human sensing systems have been studied widely because of their robustness to
the environment compared with alternative wave-based systems. In particular, continuous
wave (CW) micro-Doppler radar is a popular technique because motion recognition is
easily realized using low-cost and small systems, and the detection of any presence, and
human activity classification, are realized using time-frequency micro-Doppler signatures.
For example, tracking of multiple humans has been achieved using CW micro-Doppler
radar and interferometry with only three antennas, although its spatial resolution was
inadequate to acquire details of shape and information about motion. As a solution to this
problem, ultra wide-band (UWB) radar is a powerful tool because of its high-resolution
capability. Shape estimation using UWB radar for a moving target has been conducted
with a small number of antennas. However, because the algorithm used considers only a
single and simple convex target, it is difficult to apply this technique to complex targets
such as humans is difficult.

To satisfy all the requirements of human monitoring systems, a combination of UWB
radar, micro-Doppler radar, and interferometry techniques is an option. Here, we call
this combined technique ”UWB Doppler radar interferometry”. The two objectives of
this thesis are to realize high-resolution human imaging using the UWB Doppler radar
interferometry, and to propose target separation and classification algorithms based on
acquired images for human identification.

In the following subsections, a detailed overview of the above conventional techniques
is given, and the background and targets of the work are clarified. Section 1.2 intro-
duces human remote sensing techniques with various wave-propagation-based systems,
and clarifies the drawbacks of conventional systems. Section 1.3 introduces the CW
micro-Doppler radar technique. Human motion identification and tracking algorithms
based on time-frequency micro-Doppler signatures are reviewed. Section 1.4 describes
UWB radar techniques including accurate localization and shape estimation techniques,
and gives a simple introduction to UWB Doppler radar. The targets and the contents of
this thesis are presented in Section 1.5.
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1.2 Conventional Human Sensing Techniques with

Various Wave-based Systems

This section reviews conventional techniques to detect, track and/or identify people with
a variety of sensors using various propagated waves. The features and drawbacks of con-
ventional techniques are clarified by comparing the requirements of the human monitoring
systems outlined in the previous section. First, the classification of sensor types and their
basic properties are identified. Sensing types can be classified into two categories from
the view point of signaling:

• Passive sensing: sensors acquire signals that are available from the environment.

• Active sensing: sensors transmit their own signals and measure the properties of
the responses.

Passive sensing systems are easily realized and are relatively low-cost and small in size.
However, the quality of sensing is very dependent on the environment of the observation
area. In contrast, active sensing systems can realize robust and accurate sensing because
they can emit signals which are formatted to take into account the environment and target
features. However, in general, their complexity and cost become high.

Sensors can also be classified by wave type. The main difference between wave types
is the difference in wavelengths. The wave types which are often used for human sensing
and their wavelengths in air are:

• Visible light: 400–800 nm

• Infrared radiation: 0.7 µm–1 mm

• Radio wave: 1 mm–100 m

• Ultrasonic: more than 1.7 cm

The sensing characteristics are almost determined by the wavelength which dictates the
resolution and reflection properties of the target. Therefore, consideration of both the
properties of each sensor/wave type and the sensing objectives is important in choosing
a suitable sensor or combination of sensors.

1.2.1 Camera and Image Processing Approach

The optical camera is a representative passive sensor, which has already been used for
surveillance systems and monitoring systems for robots because of its simple implemen-
tation. In camera systems, person detection and tracking are realized using image pro-
cessing. One of the popular detection techniques currently deployed involves background
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subtraction [5–8]. This technique allows quick detection of humans. However, applica-
tions of this technique are limited to an environment where the background scene is either
static or slowly changing. This can lead to difficulties, for example, in office or conference
rooms where background objects such as chairs are moved quite frequently, leading to
much false detection. Other popular approaches involve object segmentation and pattern
matching. Object segmentation is the extraction of the human shape from the image
directly without subtracting the background [9–12]. Pattern matching convolves the in-
put image with sample images of the object [13–17]. The matching is often conducted in
other feature spaces such as histograms of oriented gradients (HOG) [17], and the match-
ing result is then classified to identify a detected target with various basic mathematical
tools such as a support vector machine [15, 16]. However, the accuracy and robustness
of these methods are insufficient in difficult environments (e.g. the number of persons
and the presence of many other moving targets such as pets and robots). For accurate
identification of detected person, human face recognition approach based on the pattern
matching techniques is widely studied [18–21]. Déniz et al. [20] proposed a robust face
recognition method using HOG to compensate for errors due to occlusions and illumi-
nation changes, and achieved accurate recognition of a variety of human face. However,
these techniques need clear image of person’s face to realize identification with sufficient
accuracy, and a robust extraction of such image is difficult. The primary problem here is
that these approaches use only two-dimensional images.

For accurate detection and identification of humans, three-dimensional information is
apparently effective, and this thesis focuses on three-dimensional sensing of shape and
motion in the followings. In camera sensing systems, common techniques for this purpose
are to use distance information obtained with a stereo camera [22–25], and motion infor-
mation obtained by object tracking using video images [9,10,14,15,24,26–28]. The stereo
camera technique realizes an estimation of the distance to the target using two cameras,
and low-complexity systems composed of CCD (Charge-Coupled Device) cameras have
been developed and implemented as the eyes of robots [25]. Fig. 1.1 shows an outline of
a stereo camera system. This system first establishes a common matching point between
two cameras, and then estimates the position of the matching point using triangulation
principles. However, this method is limited by triangulation geometry. It is difficult to
select a suitable long baseline because of the trade-off between resolution and reduced am-
biguity in the matching process. On the other hand, use of motion information obtained
by video images is effective in improving the accuracy of human detection and increasing
the number of effective parameters for human identification. The basic approaches are
frame-differencing [10, 26, 27] and optical flow [14, 15, 28] methods. The advantages of
motion-based imaging using these methods, compared with the background subtraction
and pattern matching approaches, is that the number of misdetections can be reduced
using low-complexity processing, and the disadvantage is that images of people disappear
when they stop moving, requiring further processing. To improve the resolution and accu-
racy, the use of multiple cameras (more than two) has been proposed [29–31]. Nobuhara et
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Figure 1.1: Outline of the stereo camera system.

al. [29] achieved an accurate human shape estimation using 13 cameras placed at various
locations. Obviously, the system size and cost become high.

Based on these reviews, although a large number of camera sensing techniques have
been studied and have realized person detection and identification for various conditions,
they cannot realize an appropriate resolution to obtain detailed information of shape and
motion with a picture or movie obtained from a single camera. In addition, real-time
processing to acquire appropriate resolution is difficult for conventional camera systems
because the processing becomes complex with an increasing number of cameras. Moreover,
sensing accuracy is very dependent on the luminance of the surface of a target, and the
light conditions.

1.2.2 Laser Rangefinder with Visible Light

One of the active sensor types is a visible ray laser which emits some form of radiation
and estimates the target range by detecting reflections from the target. This type of
system is known as a laser rangefinder [32]. Laser systems are more robust than camera
systems, because the laser itself emits the signals, and its rangefinder can determine the
target locations without the pattern matching that is required for a stereo camera. In
addition, compared with radio, ultrasound and infrared sensors, the visible ray laser is
immune to multipath and clutter because of its short wavelength. Two dimensional laser
rangefinders have been used to detect and localize humans [33–37], and shape estimation
using a three dimensional laser rangefinder has been achieved [38–40]. These methods
acquire the range information using triangulation or time-of-flight methods.

An example of an image of a human face estimated by means of a three dimensional
laser rangefinder and the triangulation technique is shown in Fig. 1.2, which shows the pic-
ture of a three-dimensional laser scanner (Konica Minolta Optics, Inc., VIVID910) and its
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sensing system configuration [40]. This system employs laser beam light-sectioning tech-
nology which scans work pieces using a slit beam, and light reflected from the work piece
is acquired by a CCD camera. Three dimensional data are then created by triangulation
to determine distance information. The laser beam is then scanned using a high-precision
galvanometric mirror. Fig. 1.3 shows the target face and imaging result estimated by
this laser scanner. As shown in this result, the accurate acquisition of range information
and sensing of a human face are realized. However, the regions where an image is not
obtained are apparent, especially near the hair, because the reflection power of a laser
beam is quite dependent on surface luminance. Moreover, the laser beam is required to
scan in all directions to obtain a comprehensive target image, and this leads to long data
acquisition times and relatively large system sizes. To obtain the image shown in Fig. 1.3,
the total time for data acquisition and imaging was approximately 30 s, which was too
long for the considered applications. In addition, the laser output power must be limited
to protect the eye.

1.2.3 Infrared Techniques

Infrared (IR) sensors are good candidates for advanced human monitoring systems be-
cause several characteristics are different from visible light. For example, the thermog-
raphy technique using passive IR sensors can acquire the temperature of objects [41–43].
Thermography detects radiation in the infrared range of the electromagnetic spectrum
and produces images of that radiation. Because infrared radiation is emitted by all ob-
jects based on temperature, according to the black body radiation law, thermography
makes it possible to find targets without visible illumination. The amount of radiation
increases with temperature, thus thermography allows one to see variations in tempera-
ture. Fernández-Caballero et al. [41] detected human bodies using time sequenced ther-
mographic images and real-time processing. This example means that the temperature
information of humans obtained by thermography can be applied in human monitoring
systems, especially in terms of detection.

Furthermore, active IR sensors have been used for night vision and human observation
systems. Laser rangefinder techniques are also used in IR systems, and human positioning
using an IR rangefinder has been studied [44–46]. Because the wavelength of IR is smaller
than visible light, IR has the property of minimal scattering compared with visible light.
Thus, sensing in darkness and/or smoky environments can be realized with IR. However,
there are some problems in terms of the trade-off between range resolution and system
complexity for the same reasons as in the optical approaches.

1.2.4 Ultrasound Sensor

Ultrasonic wave involves sound waves which have frequencies larger than 20 kHz. An
ultrasound sensor is an active sensor which uses ultrasonic sound to estimate the range
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Figure 1.2: Picture of 3D laser rangefinder (VIVID910) (Left) and its system configuration
[40] (Right).

Figure 1.3: Human imaging example using the laser rangefinder. Picture of human face
target (Left) and imaging result using a VIVID910 (Right).

and motion of a target. Various imaging techniques with ultrasound waves have been
developed for medical applications [49–51]. This is because these waves can propagate
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Figure 1.4: High-resolution shape estimation example using an ultrasound sensor [52].
Experimental site (Top left), outline of the vertical section of the ultrasound imaging
system (Bottom left), 3-D image (Top right) and its vertical section of x = 0 (Bottom
right).

through human organs and tissue while optical methods cannot. Furthermore, a device for
ultrasonic signals is less expensive and simpler compared to that for radio waves because
the sampling rate of an ultrasound wave is lower than for a radio wave. Consequently,
ultrasonic techniques have also been used successfully for many low-cost nondestructive
inspection applications [52–55]. Fig. 1.4 shows an example of high-resolution ultrasound
imaging system and the estimated shape of a small spherical target [52]. The maximum
error of the image estimated by the algorithm described in Section 1.4.3 was 8 µm with
a transmitting wavelength of 700 µm using the simple system shown in Fig. 1.4. This
result indicates that ultrasound sensing has great potential for super-resolution three-
dimensional imaging.

For human monitoring applications, target positioning and motion recognition tech-
niques have been studied using ultrasound propagated in air. These are based on sig-
nal processing techniques that were originally proposed for radar systems including a
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Figure 1.5: Picture of simple ultrasound Doppler sensor (Left) and measured time-
frequency distribution corresponding to a pedestrian target on a treadmill (Right) [63].

moving target indicator [56–58], interferometry [59], tracking filter [60, 61] and Doppler
sensors [62–64]. Balleri et al. [63] showed a time variation of Doppler frequencies corre-
sponding to walking motion. Fig. 1.5 shows a picture of the ultrasound Doppler sonar and
a time-frequency distribution of a pedestrian target on a treadmill, where frequency cor-
responds to radial velocity of the target’s motion (detailed description is in Section 1.3.1).
Relatively large frequencies of arms’ and legs’ movements are confirmed. This investiga-
tion showed that the motion feature of human can be detected by the simple sonar.

The propagation range for this type of wave is narrower than for radio waves, and the
transmitting and receiving devices are more sensitive to the surrounding environment. In
general, the velocity of ultrasound depends significantly on the temperature and pressure
of the air. Therefore, ultrasound sensors cannot be used in the event of fire, which means
that implementation in rescue robots is difficult. The ultrasonic devices for robust and
wide-range measurements of human sensing in air are still under development and research
[65, 66]. In addition, sensor fusion techniques with radio waves have great potential for
human sensing [67].

1.2.5 Radar Techniques

Radio waves have advantages in high range resolution, and can be applied in difficult
environments where visible rays and ultrasonic waves cannot be used, such as in smoke
and fire. Radio detection and ranging (Radar) has been developed for measurement of
the atmosphere, space debris, underground and so on. Since the end of 20th century,
the application of radar to human sensing has been widely investigated with increasing
interest for security systems. With the dissemination of wireless systems in various fields,
passive radar systems are notable for use in indoor intruder detection and positioning.
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Many positioning algorithms for passive radars have been proposed using a Wireless Local
Area Network (WLAN) based on the IEEE 802 standards such as WiFi (802.11) and
WiMAX (802.16) [68–71], digital video terrestrial broadcasts [72] and the global system
for mobile communications [73]. These systems detect a cross-ambiguity function χ(τ, f)
which generates a range-Doppler map, expressed by [68]:

|χ(τ, f)|2 =
∣∣∣∣∫ ∞

−∞
u(t)s∗(t− τ) exp(j2πft)dt

∣∣∣∣2 , (1.1)

where s(t) and u(t) are the reference and the echo signals, ∗ is the complex conjugate
and j =

√
−1. τ and f define the time-delay corresponding to range and the Doppler

frequency. Chetty et al. [69, 70] presented a human positioning algorithm and its appli-
cation examples based on Eq. (1.1) with a single receiver or a small number of receivers.
These examples indicated that the Doppler shift of a pedestrian is accurately determined
by a few receivers in a room with a single WiFi access point and some fixed obstacles.
However, these systems are only able to estimate range to the order of 1 m and are unable
to provide shape information, so their application to three-dimensional imaging of shape
and motion is difficult.

On the other hand, classical active radar systems can acquire more accurate shape
and motion information compared with passive radars. For moving target imaging, a
number of effective algorithms are known, including inverse synthetic aperture radar
(ISAR) [74–77], range-Doppler interferometry [78,79] and time-reversal (TR) [80,81] tech-
niques. These techniques were developed for purposes other than robot or indoor monitor-
ing systems. Consequently, the system model characteristics (frequency and bandwidth
of transmitting signals, size, shape and motion of targets, and measurement environ-
ments) are unsuitable for human sensing. However, about ten years ago, these radar
techniques and their advances became applicable to radar human imaging, because of
technical improvement in radar hardware and computers and the regulations on the per-
missible output power for radio waves with broad bandwidth (UWB signals). To realize
human sensing using high-frequency transmitted signals, micro-Doppler radar and UWB
radar techniques for human sensing applications have been an active research area. Thus,
the focus is on these techniques in the following sections.

1.3 CW Micro-Doppler Radar Techniques

Conventional optical human sensing systems require complicated and high-cost process-
ing systems and/or time-consuming procedures to obtain information on movements and
accurate positions. To realize motion recognition and identification with a simple system,
CW micro-Doppler radar techniques have been widely studied, and many researchers have
applied this to human tracking and identification. This section introduces the basics of
CW micro-Doppler radar sensing [82,83] and various recent studies on motion identifica-
tion and imaging of people [84–109].

10



1.3.1 Principle and Procedure of CW Micro-Doppler Radar

In this subsection, the definition and the description of the micro-Doppler effect and
a basic procedure of the conventional CW micro-Doppler radar sensing are explained.
First, to clarify effectiveness of the micro-Doppler radar, its features and a difference
between conventional mean-Doppler and micro-Doppler effects are discussed. In radars
which use microwaves, the modulation due to slight vibration and rotation, called micro-
motion, induce frequency modulation on the returned signal and generates sidebands
about the Doppler frequency shift of the target’s body. This phenomenon is called the
micro-Doppler effect [82,83], and motion information of various human body parts can be
detected by extracting their micro-Doppler frequencies. In contrast, conventional Doppler
radars acquire mean velocity of targets. For instance, ISAR extracts Doppler frequencies
of targets for a motion estimation process. In this process, ISAR assumes that target
is rigid body and slight motion changes of target’s surface and various parts of a target
are ignored [74,75]. Many other conventional radar imaging techniques are based on this
assumption and detection of micro-motion is not considered. Consequently, for human
sensing, conventional Doppler radars acquire only mean-Doppler frequency corresponding
to motion of whole human body, and acquisition of information on micro-motion of each
body part, such as arm-swing and body-oscillation, is thus difficult. On the other hand,
the micro-Doppler radars acquire radial velocity of each body part because of using rela-
tively high-frequency microwaves for transmitting signals. Thus, micro-Doppler radar is
effective for extraction of human motion details and has become active research area for
various human monitoring applications.

The micro-Doppler radar can be mathematically formulated same as the conventional
mean-Doppler radar. In coherent radar, the variations in range direction cause a phase
change in the returned signal from a target. Thus, the Doppler frequency shift that
represents the change of phase function with time can be used to detect micro-motions of
a target. Here, a mono-static radar and CW signal is assumed as the transmitting signal,
which is expressed as:

sTc(t) = Aej(2πf0t+φ0), (1.2)

where A is the amplitude, f0 is the frequency and φ0 is the initial phase. In the micro-
Doppler radar systems, f0 is approximately 1-100 GHz. The reflected echo from a point
scatterer has a time varying phase φ(t), and can be given by:

s′R(t) = ηAej[2πf0t+φ0+φ(t)], (1.3)

where η < 1 is the ratio of the received amplitude to A. Consequently, the reflected signal
after demodulation from N multiple scatters is expressed as:

sR(t) =
N∑
i=1

ηiAe
jφi(t). (1.4)
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Measurement using CW micro-Doppler radar
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Figure 1.6: Basic procedure of target classification and tracking of humans using CW
micro-Doppler radar.

The distance between the radar and the i-th scatterer is defined as Ri, and the radial
velocity of the scatterer is defined as vdi. With these parameters, φi(t) is expressed as:

φi(t) = −2π
(
2Ri

λ
− 2vdit

λ

)
, (1.5)

where λ = c/f0 is the wavelength and c is the speed of light. Thus, the Fourier transform
of fR(t) is expressed as:

SR(f) =
N∑
i=1

ηiAδ (f − fdi) , (1.6)

where δ(f) is Dirac’s delta function, and fd is called the Doppler frequency expressed as:

fdi =
2vdi
λ
. (1.7)

As shown in Eqs. (1.6) and (1.7), the micro-Doppler effects are extracted as the Doppler
frequencies of the received signal, and the radial velocity of each scatterer is derived from
the Doppler frequency spectrum.

The conventional CW micro-Doppler radar systems are mainly used for motion/target
classification (Section 1.3.3) and tracking of humans (Section 1.3.4). Fig. 1.6 shows the
outline of the micro-Doppler radar signal processing for these applications. These applica-
tions use micro-Doppler signatures extracted by time-frequency analysis of received signals
(Section 1.3.2). The following subsections introduce several represented approaches for
each part of Fig. 1.6, and review conventional studies.
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1.3.2 Time-Frequency Analysis for Detection of Micro-Doppler
Signatures

To extract the Doppler frequency, the frequency spectrum of the received signals must be
determined. Moreover, the radial velocities (corresponding to the Doppler frequencies) of
targets generally have time-variations. Thus, the micro-Doppler radar systems often use
time-frequency analysis algorithms to obtain the time-variation of the spectrum. This
section reviews the time-frequency analysis algorithms. Although a large number of time-
frequency analysis algorithms have been proposed [110, 111], the focus in this work is on
several algorithms which are often used for micro-Doppler radars.

Short-Time and Sliding-Window Discrete Fourier Transform

The most commonly used time-frequency analysis algorithm is the short-time Fourier
transform (STFT). The STFT calculates the Fourier transform of each local section of
the signal extracted using a window function which is non-zero for only a short period of
time. The STFT of the received signal sR(t) is determined by:

STFT(t, fd) =

∫ ∞

−∞
sR(t+ τ)w(τ)e−2πfdτdτ, (1.8)

where w(t) is the window function. The STFT is obtained by sliding the window along
the signal. In particular, if the STFT is evaluated for every time-shift of the window,
this algorithm is called the sliding-window discrete Fourier transform (SDFT) [112]. The
magnitude squared of the STFT is called the spectrogram, and is often used for displaying
the results. The spectrogram is expressed as:

PST(t, fd) = |STFT(t, fd)|2. (1.9)

The STFT is a popular algorithm because of its relatively short calculation time. Its
disadvantage is in the trade-off between time and frequency resolutions, called the Gabor
limit. Improvement in the frequency resolution is realized by a wide window function,
which leads to a loss in time resolution. Consequently, STFT and SDFT do not realize
good time and frequency resolutions simultaneously. Thus, in practice, the width of the
window function w(t) is an important parameter.

Many micro-Doppler radar analyses using STFT, of a human walking, have been per-
formed. [84] and [85] show the STFT spectrogram for three types of walking motion:
swinging both arms, swinging only one arm, and no arm motion, which extracts the dif-
ference in these motions using the image processing approach. Sume et al. [86] investigate
the spectrogram of a pedestrian round a corner, and detect the human target using this
spectrogram based on a moving target indicator algorithm. Many measurement results
with STFT or SDFT for various motions and target types are given in [87–100] and in
numerous other proceedings and papers. These indicate that although the appropriate
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setting of the resolution with STFT or SDFT is difficult, micro-Doppler radar applications
normally use these methods because of their simplicity.

Smoothed Pseudo Wigner Distribution

A smoothed pseudo Wigner distribution (SPWD) is a high-resolution time-frequency anal-
ysis method, which does not have the trade-off between time and frequency resolution.
SPWD is acquired by smoothing the Wigner distribution. The Wigner distribution of the
received signal is determined based on the Wiener–Khinchin’s theorem as:

WD(t, fd) =

∫ ∞

−∞
sR(t+ τ/2)s∗R(t− τ/2)e−2πfdτdτ. (1.10)

The right-hand side of this equation expresses the Fourier transform of a time-varying
auto-correlation function without time-averaging. According to the Wiener–Khinchin’s
theorem, the Fourier transform of the auto-correlation function is the power spectrum;
thus Eq. (1.10) determines the power spectrum at all times with maximum frequency
resolution. This means that the time-frequency resolution of the Wigner distribution is a
physical limitation. Since averaging is not conducted, however, the Wigner distribution
generates many cross-terms due to interference of multi-frequency components. Smooth-
ing of the Wigner distribution is effective in rejecting the cross-terms, and is known as
the smoothed pseudo Wigner distribution (SPWD) [111]. The SPWD is determined by:

SPWD(t, fd) =

∫ ∞

−∞
Φ(t− t′, fd − f ′

d)WD(t′, f ′
d)dt

′df ′
d, (1.11)

where Φ(t, fd) is the smoothing function expressed as:

Φ(t, fd) = e−(t/σt)2e−(fd/σf)
2

, (1.12)

where σt and σf are the parameters that control the resolution. With a suitable setting
of σt and σf , we can acquire a high-resolution time-frequency distribution with few cross-
terms compared with STFT. Therefore, appropriate setting of the smoothing parameters
σt and σf is very important in practice.

SPWD and related algorithms have been used for motion estimating in ISAR imaging
with Doppler radar system [113,114]. For micro-Doppler radar, SPWD analysis of simple
micro-motion was investigated with numerical simulation by Chen et al. [82,83]. However,
their assumed motion is very different from human motion. Zhang [101] investigated the
SPWD of a pedestrian, and discussed the comparison with STFT. However, his discussion
was from the perspective of the resolution of time-frequency distributions, and positioning
and imaging were not considered. This can be predicted because a complete rejection
of cross-terms is difficult, interference from cross-terms and targets might be a serious
problem for imaging and positioning. In contrast, the resolution of imaging using SPWD
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is better than that using STFT. However, the calculation time of SPWD is larger than
STFT. Considering these points, the imaging quality and real-time capability for STFT
and SPWD need to be compared, and this is investigated in Chapter 2.

Other Representations

One of the other popular time-frequency representations is Wavelet Transform which is
used for feature extraction from moving targets. The wavelet transform can provide the
frequency of the signals and the time associated with those frequencies. Thayaparan et
al. [102] analyzed the micro-Doppler signatures of a helicopter and a person walking using
wavelet transforms. However, the same problem as STFT in terms of the trade-off between
time and frequency resolution exists. In addition, the noise tolerance is inadequate for
human sensing. Many other time-frequency analysis methods have been proposed to
realize high-resolution (such as the SPWD) and reliable representation (like the STFT
and SDFT). Recently, the more popular methods have been an S-method [116] and a
Hilbert-Huang transform [117]. The S-method is defined by the STFT of the received
signal as:

SM(t, fd) =

∫ ∞

−∞
P (θ)STFT(t, fd + θ)STFT∗(t, fd − θ)dθ, (1.13)

where P (θ) is the frequency domain window. The cross-terms which occur when increas-
ing the resolution are rejected by this window function. Oróvic et al. [103] showed the
time-frequency distribution of arm and torso movements in various walking motions us-
ing the S-method. However, the setting of suitable P (θ) was difficult, and improvement
in performance compared with STFT and SDFT was slight. The Hilbert–Huang trans-
form provides high-resolution time-frequency distribution without cross-terms, which is
based on the determination of the Hilbert spectrum for each intrinsic mode function
of the signal. The Hilbert–Huang spectrum of a pedestrian was presented by Fairchild
and Narayanan [104]. However, its calculation time was too long and control of the
time-frequency resolution was difficult. Many other high-resolution time-frequency rep-
resentations have been proposed, but their calculation times were also too long and their
appropriate parameter settings are still important research tasks [110]. Thus, the basic
methods, the SDFT and SPWD, are used and compared in this study.

1.3.3 Motion/Target Type Classification Algorithms

The motion features in time-frequency distributions can be recognized as described in
the previous section. Based on these features, methods to classify and identify motion
and target type have been proposed. Most of conventional researches extract feature
parameters from the time-frequency distribution, and classify motion/target types using a
variety of discriminant or cluster analysis algorithms. This subsection introduces popular
algorithms, and reviews their application examples in CW micro-Doppler radar sensing.
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Perceptrons

A perceptron is the simplest method used to find a linear separating hyperplane in feature
space which separates classes of objects or events [118,119]. In this method, a separating
hyperplane is determined from a training data set, and unlabeled input data is classified
by a comparison with the determined separating plane. The left side of Fig. 1.7 shows a
schematic of a perceptron for 2 class separation in 2-dimensional feature space. Let us
consider the training data set D and a set of n points of the form:

D = {(xi, y)|xi ∈ Rp, yi ∈ {−1, 1}}ni=1 (1.14)

where yi is a label of xi which is either 1 or -1. The perceptron determines a maximum-
margin hyperplane that separates xi of the class 1 and −1. The linear hyperplane is
expressed as:

wTx+ b = 0, (1.15)

where T denotes the transposition, w is a weight vector and b is the intercept. Here, the
margin between the hyperplane and xi is minimized under the condition that the target
class of the training data set is correct. This optimization problem is formed as:

max
w,b

min
i=1···n

wTxi + b

‖w‖
,

sub. to sign(wTxi + b) = yj (j = 1, · · · , n), (1.16)

where sign(x) is a signum function. Eq. (1.16) can be simplified as [119]:

min
w,b

1

2
‖w‖2,

sub. to yj(w
Txi + b) ≥ 1 (i, j = 1, · · · , n). (1.17)

Then, unlabeled data is classified using the hyperplane determined using the training data
set. A label of an unlabeled query data xq is determined by:

y(xq) =

{
1 (|xq| ≥ wopt

Tx+ bopt)
−1 (|xq| < wopt

Tx+ bopt)
, (1.18)

where wopt and bopt are estimated parameters by solving the problem of Eq. (1.17).
For the case where the training data cannot be separated without error, Cortes and

Vapnik [122] propose a modified maximum margin idea that allows for mislabeled exam-
ples, terming this technique the soft-margin hyperplane. The right side of Fig. 1.7 outlines
the soft-margin hyperplane. This technique introduces slack variables ξi which measure
the degree of misclassification of the data as shown in this figure. The hyperplane is
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determined by optimizing a trade-off between a large margin and a small error penalty.
Thus, the optimization problem of Eq. (1.17) is modified as:

min
w,ξ,b

1

2
‖w‖2 + C

n∑
i=1

ξi,

sub. to yj(w
Txi + b) ≥ 1− ξi (i, j = 1, · · · , n), (1.19)

where C is a constant to control the balance of the first term (maximization of margin)
and the second term (minimization of penalty).

Some researchers use the classification methods with the perceptrons for micro-Doppler
radar systems [85, 120, 121]. Li et al. [85] realized the classification of arm-motion in
walking with a soft-margin perceptron. However, the classification accuracy was 80-90 %
with an input time duration of 7 s. These were insufficient values for human identification
applications in real-time. The perceptrons are easily improved with advanced algorithms
such as a support vector machine and an artificial neural network, which can realize more
accurate separation using a non-linear hyperplane. Thus, many target classification and
identification algorithms using CW micro-Doppler radars used these advanced algorithms.

Support Vector Machine

The support vector machine (SVM) is one of effective discriminant analyses capable of
determining non-linear separating hyperplanes between two classes [123–126] based on
the perceptron. Fig. 1.8 shows a schematic of an SVM in 2-dimensional feature space.
Given a training data set, each element of which belonging to one of two classes, the SVM
makes a model that assigns new examples into one class or the other. The basic concepts
of the SVM are:

• Conduct a non-linear transform from input space to a high-dimensional feature
space, which can classify the input data with a linear separating plane.

• In the high-dimensional feature space, the linear separating hyperplane is deter-
mined by the perceptron with Eq. (1.17) or Eq. (1.19).

The SVM can perform non-linear classification using the kernel function, which implicitly
transform their inputs into high-dimensional feature spaces. Let us consider the non-linear
separation of a feature vector x. The kernel functionK(x,x′) expresses both the transform
to high-dimensional space and the distance between x and x′ after the transform [123].
Using K(x,x′) and Eq. (1.15), the separating plane determined by the SVM is expressed
as:

NTr∑
i=1

wiK(xi,x) + b = 0, (1.20)
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Figure 1.7: Schematic of the perceptron (Left) and the soft-margin hyperplane (Right).
Color means class label of each data point.
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Figure 1.8: Schematic of SVM.

where NTr is the number of data. The optimum w and b are determined by solving the
optimization problem in the same way as the perceptron. The SVM which is determined
using Eq. (1.17) is called a hard-margin SVM, and when using Eq. (1.19), is called a soft-
margin SVM. In practice, the soft-margin SVM is widely used because of its robustness
[87,89,104,125]. A variety of kernel functions are known and developed for various types
of feature space. The most popular kernel function is the Gaussian kernel function, which
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is known as a general-purpose function for the SVM. It is expressed as:

K(x,x′) = e−σ‖x−x′‖2 , (1.21)

where the parameter σ controls the expression capability of the separating plane. If a
large σ is set, a complex boundary can be expressed using the kernel function. Generally,
appropriate parameters are set using the cross-validation approach [124].

The SVM (including the perceptron), was originally proposed as a two-label classifier.
In practice, however, multi classes of more than two often have to be dealt with. A classifi-
cation method for multi classes based on the SVM has been proposed [126]. One approach
commonly used in practice is to reduce the single multiclass problem into multiple binary
classification problems. In this type of method, binary classifiers are built which separate
between one of the labels and the rest (called one-versus-all) or between every pair of
classes (called one-versus-one). Classification of data samples for the one-versus-all case
is conducted by a winner-takes-all strategy, in which the classifier with the highest output
function assigns the class. For the one-versus-one approach, data samples are classified
by a max-win voting strategy, in which every classifier assigns the instance to one of the
two classes, then the vote for the assigned class is increased by one vote, and finally the
class with the most votes determines the classification outcome.

In micro-Doppler systems, the SVM has been a popular method for motion type clas-
sification in recent years. Kim and Ling [87] realized a classification of various human
activities (walking, running, sitting, and so on) using the SVM in a feature space com-
posed of parameters of time-frequency distribution, such as peak-to-peak value, cycle,
and offset. Fairchild and Narayanan [104] achieved accurate human activity classifica-
tion using a multi-class SVM with parameters of the Hilbert–Huang spectrum. However,
for classification with sufficient accuracy using these methods, long-term data and/or
time-consuming procedures are needed. For instance, the input time duration for the
method in [87] required 3 s, which is not real-time for the assumed applications. Al-
though many other applications for micro-Doppler techniques using the SVM have been
proposed [88, 89], they have the same problems in terms of input/calculation time. The
reasons for this are examined at the end of this section.

k-Nearest Neighbor

One other classification approach which is different from the perceptron is the technique
based on the closest training samples in the feature space. k-nearest neighbor (k-NN)
algorithm is a representative method of this type of classifier. Fig. 1.9 shows the schematic
and procedure for k-NN in two-dimensional feature space. The training data set is first
prepared, and the unlabeled data are then queried. In the classification process, k-NN
algorithms calculate distance between a query point and all training data. The query
point is then classified by assigning the most frequent label in k training samples nearest
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Figure 1.9: The procedure of the k-NN algorithm.

to the query point. Here, k is a user-defined constant, and if k = 1, the object is then
simply assigned to the class of its nearest neighbor.

This algorithm is widely used for target identification in radar and other applications
because of its simplicity. Moreover, classification of multi-classes is easy compared with
the SVM. In micro-Doppler radar systems, the k-NN is used for motion classification with
feature parameters extracted from the time-frequency distribution [63,64,90,98,105]. Liu
et al. [89] proposed a fall detection method for humans using 3-NN in the features space
composed of mel-frequency cepstral coefficients and achieved a detection accuracy of 96%.
However, the main drawback of k-NN is that a relatively large number of training data
are required. In particular, to express the complex class-boundary, many training data
near the boundary are needed, and the preparation of an appropriate training data set is
difficult in this case.

Naive Baysian Classifer

The Naive Baysian classifier (NBC) is a probabilistic classifier based on Bayes’ theorem
with naive independence assumptions of feature parameters. This method is known as
an effective method for document categorization problems [129, 130]. Let us consider a
dependent class variable C with a small number of classes, conditional on several feature
variables F1, F2, · · · , Fn. Using Bayes’ theorem, the probability model for a classifier is:

p(C|F1, F2, · · · ) =
p(C)p(F1, F2, · · · |C)

p(F1, F2, · · · )
. (1.22)

Here, NBC assumes that each feature is conditionally independent of other features for a
given class. This means that p(Fi|C,Fj) = p(Fi|C) when i 6= j. With this assumption,
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Eq. (1.22) can be expressed as:

p(C|F1, F2, · · · ) =
1

p(F1, F2, · · · )
p(C)p(F1|C)p(F2, · · · |C,F1)

=
1

p(F1, F2, · · · )
p(C)p(F1|C)p(F2|C) · · · . (1.23)

p(C) and p(Fi|C) can be calculated using a training data set. The classification with
NBC is then conducted by:

classify(f1, · · · , fn) = argmax
c
p(C = c)Πn

i=1p(Fi = fi|C = c). (1.24)

This algorithm is also used for the micro-Doppler radar or sonar systems [63,91,92,106].
Igal and Joseph [91] accomplished the classification of vehicles and humans using the
NBC with an accuracy rate of 99 %. Generally, an advantage of the NBC is that it
only requires a small number of training data to estimate the parameter compared with
the k-NN. However, the superiority of NBC is unclear in the comparison with k-NN and
SVM in micro-Doppler radar applications. For example, the comparisons between the
performances of NBC, k-NN and SVM were carried out in [92], and showed that k-NN
realized the best classification accuracy for the fall detection application. Another study
of the micro-Doppler sonar, however, reported that NBC is better than k-NN for the
classification of three people with different figures [63]. These studies mean that the
classification performance of each algorithm is dependent on the applications. In other
words, the difference in performance is dependent on the feature space and distributions
of the training data set. Examples of performance comparison for these algorithms are
also given in Chapters 4 and 5 of this thesis.

Other Algorithms and Summary

Other popular classification algorithms used in the CW micro-Doppler radars are the
artificial neural network (ANN) and cluster analysis algorithms. In this subsection, these
classifiers and application examples are briefly explained, and the summary and drawbacks
of the conventional classification methods described in this section are discussed.

ANN is a typical classification method based on the perceptron. This method realizes
non-linear classification using a combination (network) of the perceptrons. A number of
CW micro-Doppler radar systems used this method for target classification and identifi-
cation [93–95,131]. However, application to the micro-Doppler radar system has declined
in recent years because of the popularization of the SVM. This is because the separating
hyperplane determined by ANN is very sensitive to the setting of initial values compared
with the SVM.

Another type of classification method is the cluster analysis algorithm. The advantage
of this type of method is that they do not need a training data set. The k-means method is
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known as one of the effective clustering methods, and this is used for motion classification
in the micro-Doppler radar systems [96]. However, this method is less accurate than other
algorithms described in this section because it does not use a training data set.

Based on the discussions in this section, the important issue in developing a motion
identification method is the appropriate selection of the classification algorithm and its
parameters with consideration for the properties of a training data set and the feature
space. In addition, the common problem of these conventional techniques is the require-
ment for long-term data and/or complicated procedures to realize sufficient accuracy.
This is because the conventional methods used only feature paramters extracted from
only time-frequency distributions, and sufficient input time duration was thus needed. As
a solution to this problem, the use of parameters of not only time-frequency distribution
but also positioning and imaging results that are acquried in real-time can be a considered
approach. For instance, velocity and direction of moving humans can be extracted from
orbit of positioning results, and figure parameters such as height and arm/leg-length can
be extracted from images of target shape. Incorporating these parameters to the classi-
fication and identification methods may improve their accuracy in a shorter time data.
Consequently, high-resolution and real-time imaging techniques are promising for human
identification applications.

1.3.4 Human Tracking with CW Doppler Radar Interferometry

The micro-Doppler effect is useful not only for motion recognition but also for the position-
ing of multiple targets. Positioning and tracking results can improve the performance of
human motion classification and identification systems described in the previous section.
Development of the method to accurately acquire this information is thus very important.
Lin and Ling [107–109] proposed a CW Doppler radar interferometry approach for the
multiple target separation, positioning and tracking of persons. This algorithm separates
human body parts based on the differences in their Doppler frequencies, and the position
of each target is estimated using an interferometer composed of a small number of an-
tennas. Fig. 1.10 shows the antenna configuration and the block diagram of the imaging
system proposed in [109]. As shown in this figure, this system is realized by a simple sys-
tem composed of three receiving antennas and two frequencies. The transmitting signal
is a two frequency CW signal expressed as:

sTci(t) = Aej2πfat + Aej2πfbt, (1.25)

where fa > fb. First, the Fourier transform is applied to the received signals at all
antennas, defined as SR1(f), SR2(f), SR3a(f) and SR3b(f). Multiple targets are resolved
as shown in Eq. (1.6). A direction-of-arrival (DOA) and distance of each separated i-th
target are then estimated. With the interferometer composed of the receiving antennas
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Figure 1.10: Antenna configuration (left) and block diagram (right) of the imaging sys-
tem with CW Doppler radar interferometry (Lin and Ling [109]). Tx and Rx represent
transmitting and receiving antennas, LO is local oscillator, FFT is fast Fourier transform,
and DOA represents direction-of-arrival.

Rx1 and Rx3, the elevation DOA of the i-th target is determined by [107,108]:

θEL(fdi) = sin−1

[
6 SR1(fdi)− 6 SR3a(fdi)

(2πd/λ)
.

]
, (1.26)

In the same way, the azimuth DOA is determined by the interferometer composed of Rx1
and Rx2 as:

θAZ(fdi) = sin−1

[
6 SR1(fdi)− 6 SR2(fdi)

(2πd cos θEL(fdi)/λ)

]
, (1.27)

The distance is estimated by frequency domain interferometry as [109]:

R(fdi) =
c [6 SR3a(fdi)− 6 SR3b(fdi)]

4π(fa − fb)
. (1.28)

The human tracking [107, 109] examples using CW Doppler radar interferometry were
performed, and the moving orbits were detected using only three receiving antennas.
Moreover, a frontal image of a human was obtained in [108] from the experimental data.
Fig. 1.11 shows the frontal image of a human target obtained from the estimated DOAs.
The outline of the human shape was confirmed to some extent.

However, the resolution of these examples is insufficient to acquire the details of human
shape and motion information because of:

• The acquisition of accurate ranges for all body parts is difficult because a CW is
used.
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Figure 1.11: Frontal image (DOAs) of a human estimated by CW Doppler radar interfer-
ometry (Lin and Ling [108]).

• In the interferometry process, many false images occurred because it assumed all
targets have different Doppler shifts, which is not satisfied in a real environment.

For these reasons, only the front view of a human outline could be confirmed as shown in
Fig. 1.11. Thus, high-resolution range estimation without increasing system complexity is
needed for human sensing using Doppler radar interferometry. The UWB radar techniques
are good candidates as a solution to this problem.

1.4 UWB Radar Techniques

The main problem with conventional optical and radar techniques is that the acquisition
of shape/motion details with a simple system is difficult because of poor range resolution.
However, high-resolution tracking and imaging methods using UWB radar with a small
number of antennas have been proposed in recent years. These UWB radar techniques
provide a promising solution to the conventional problems. This section introduces the
UWB signals, and reviews UWB radar techniques for high-resolution human sensing.

24



Figure 1.12: EIRP limitations on UWB signals of each frequency.

1.4.1 UWB Signals

A UWB signal is a very short pulse of a signal with a very large bandwidth. Thus,
using this signal in radar systems can realize accurate range measurements, which leads
to high-resolution sensing. In 2002, the Federal Communication Commission (FCC) of
the United States regulated the 15 part rules concerning UWB signals [132]. The FCC
defined a UWB device for civilian purposes as one with:

• a fractional bandwidth greater than 0.2,

• a bandwidth of signal greater than 500 MHz.

The fractional bandwidth and bandwidth were formulated by the Commission as 2(fH −
fL)/(fH+fL) and (fH−fL), respectively, where fH is the highest frequency of the −10 dB
emission point and fL is the lowest frequency of the same emission point. Fig. 1.12 shows
the limitation on the EIRP (Equivalent Isotropically Radiated Power) of UWB signals.
Fig. 1.13 shows the comparison between a conventional radar pulse and a UWB signal.
Such short pulse can measure high-resolution range. Thus, UWB signals provide a great
advantage for high-resolution, and enable proximity imaging using radar.

1.4.2 Human Positioning and Imaging Algorithms

The applications of UWB radar for human sensing have been widely studied for indoor
security systems. Many high-resolution positioning methods with multi-static UWB radar
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Figure 1.13: Conventional narrow band (left) and UWB signals (right).

systems including sensor networks [133–137] and multiple-input multiple-output system
(MIMO) [138, 139] have been developed. These are based on classical pulse radar po-
sitioning techniques such as a tracking filter [133, 134], a migration algorithm [135, 136]
and interferometry [137]. In particular, synthetic aperture radar (SAR) and time reversal
(TR) techniques have been widely used and have indicated better results. In the following
section, these representative conventional UWB radar positioning and imaging systems
are reviewed, and their problems are identified.

SAR and ISAR Techniques

SAR is known as one of the efficient and useful techniques in pulse radar imaging systems.
SAR is classically used for geographical imaging from airplanes and satellites [142], ground
penetrating radar [143], and so on. The technique can be used for near-field sensing using
UWB pulse radar. The principles of SAR imaging are summarized as follows. Fig. 1.14
shows the example of UWB-SAR imaging with a scanning antenna for a 2-D problem.
The SAR technique coherently integrates signals observed at various places using small
antennas, which create an equivalent wide antenna aperture. Two-dimensional imaging
in the xz plane is considered where the mono-static antennas are located along the x-axis.
The upper part of Fig. 1.14 shows the echo intensity at each antenna position. The SAR
obtains an imaging result I(x, z) by the summation of these echo intensities as:

I(x, z) =

∫ ∞

−∞
s
(
X,

√
(X − x)2 + z2

)
dX, (1.29)

where s(X, t) is the received signal in time t at the antenna location (x, z) = (X, 0). In
Eq. (1.29), the received signals focus on the target boundary, and the boundary enlight-
ened with the amplitude intensity shown in the lower part of Fig. 1.14 can be recognized.
The SAR technique has already been used for the UWB radar applications on human
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Figure 1.14: Principles and example of SAR imaging with antenna scanning. System
model and received signals at various antenna positions (Above) and the imaging result
using Eq. (1.29) (Below).

shape estimation [139–141]. Fig. 1.15 shows the system configuration of MIMO-SAR
imaging and 3-D imaging of a mannequin with concealed weapons, using this technique
as performed by Zhuge and Yarovoy [139]. Accurate shape estimates of the mannequin
and weapons were achieved. However, the size of the scanning area was 130 cm × 130
cm, which is very large for the assumed applications. Other conventional techniques have
also been applied to the antenna array systems but lead to complex systems that are too
costly.

Although the SAR requires wide-scanning antenna and/or a large antenna array, an
imaging technique with a small number of antennas based on the SAR is widely known as
the inverse SAR (ISAR) technique [113,144–148]. ISAR uses target motions instead of the
antenna scanning in SAR systems, and thus images can be estimated by a small number of
antennas. The target shape is extracted by the integration of signals with compensation
for the estimated motion. ISAR techniques achieved shape estimation of rotating targets
with estimates of motion parameters [144, 145]. Bertl et al. [146, 147] investigated the
application of the ISAR to human imaging, and achieved three-dimensional scattering
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Figure 1.15: The system model of MIMO-SAR imaging (Left) and the mannequin target
with concealed weapons and its estimated image (Right) shown by Zhuge and Yarovoy
[139].

center extraction of an actual human target. However, they assumed that the person
was rotated standing on a turntable, which was not a realistic situation. For shape
estimation of a target with arbitrary motion, investigation on the modeling of targets
and shape has been conducted using various time-frequency analysis and model fitting
algorithms [113, 148]. However, for the intended application in this study, the problem
is complex compared with their assumed model, because the target is relatively close
to the antennas. This shifts the scattering centers on the target surface, depending on
the relative positions of the antenna and target. In addition, human motion cannot be
modeled as a simple function because it is basically arbitrary. Furthermore, these SAR-
based techniques require a total search of the assumed region, and the calculation time is
enormous. As such it cannot be applied to real-time operations.

TR imaging

The TR imaging algorithm [149–152] is used for positioning and tracking of scattering cen-
ters. First, the basic principles of TR imaging are explained [150]. A target is considered
which is treated as M scattering centers, a linear antenna array composed of K receivers
with the k-th receiver located at rk, and a single source at rs shown as Fig. 1.16. The
signals recorded at the array are time-reversed and re-emitted into the medium because
the back-propagated field focuses near the active targets. The array acts as a mirror that
refocuses the time-reversed signals back onto the source from which they emitted. The
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Figure 1.16: Schematic of TR imaging. Outline of Radiation and receiving process (Left)
and time-reversal and focusing processes (Right).

focusing resolution is determined by the array size a, distance L and the transmitting
wavelength as shown in Fig. 1.16, when L � a. Assume that a time domain pulse s(t)
is emitted from the transmitter at rs. The field incident on the target at r′ due to the
source is represented as:

E(r, t) = s(t) ∗Ge(r
′, rs, t), (1.30)

where Ge(r
′, rs, t) is the Green’s function representative of a source emitting in the pres-

ence of clutter and ∗ is the convolution operator. The scattered electric field at the k-th
receiver Uk(ω) is expressed with the Born function and the high-frequency approximation
as:

Uk(ω) '
M∑

m=1

Bm(r
′)P (ω)Ge(r

′
m, rs)Ge(rk, r

′
m), (1.31)

where Bm(r
′
m) is a function that represents the conversion of the excitation field E(r′, t)

into equivalent currents that re-radiate as secondary sources. For each receiver, the time-
reversal signals Ik(r, t) are calculated as:

Ik(r, t) =

∫ [
M∑

m=1

Bm(r
′)P (ω)Ge(r

′
m, rs)Ge(rk, r

′
m)

]∗

Gc(r, rk)Gc(rs, r)e
jωtdω, (1.32)

where the subscript c emphasizes that Green’s functions are computed within the imaging
process. The TR image is focused on the target location by the summation for all receivers
as:

I(r, t) =
K∑
k=1

Ik(r, t), (1.33)

and calculating the total field at time t = 0, which corresponds to the time of arrival from
the target. This method can also achieve robust imaging in a highly cluttered environment
by choosing an appropriate Green’s function. Because of the high-resolution and robust
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capability, the TR imaging algorithm has been widely investigated in the development
of an early-stage breast cancer detection method [153, 154] and through-the-wall human
positioning and tracking systems [155–157]. For example, Maaref et al. [155] achieved
high-resolution tracking of an actual pedestrian target behind a wall.

The general TR imaging systems explained above are composed of antenna arrays or
antennas placed at various locations. TR imaging algorithms using a few antennas have
been proposed in recent years [158–160]. The feature of these methods is the positive use
of multipath echoes from walls and/or other fixed obstacles. Fig. 1.17 shows the system
model for time-reversal imaging with a single antenna and the imaging result of a circular
target in a room, which is shown in [158]. Although the actual antenna in this room is only
a(0), a number of mirror image antennas a(i) (i = 1, 2, · · · ) can be assumed at symmetrical
positions with respect to the walls of the room by considering the multipaths. The image
I(r) is produced using Eq. (1.33) using different antenna pairs after compensating for the
time delay of the pulses. A positioning with a single antenna realized with focusing using
the TR process is confirmed in Fig. 1.17.

However, the estimating region of the image is limited and its resolution is insufficient.
In addition, the resolution and robustness depend highly on suitable selection of the
Green’s function, which is difficult. Moreover, intensive computation is required, as the
calculations for these are based on, for example, the ray-tracing method [149]. The
requirement of time-consuming calculations is a common problem for classical UWB pulse
radar imaging algorithms which are mainly used for ground penetrating radars [161], which
means that it is difficult for these conventional algorithms to achieve real-time monitoring.

1.4.3 Shape Estimation with SEABED-Class Algorithms

The most serious problem of conventional UWB radar positioning and imaging systems
(and many other conventional radars and human sensing systems with other waves) is that
time-consuming processes and/or complex systems are required to achieve high-resolution
sensing. As an effective solution to this problem, the SEABED (Shape Estimation Al-
gorithm based on BST and Extraction of Directly scattered waves) approach, which is a
super-resolution and real-time imaging algorithm for UWB pulse radars, has been pro-
posed by Sakamoto and Sato [162, 163]. SEABED is based on a reversible transform
BST (Boundary Scattering Transform) between the received signals and the target shape,
and can specify the target surface locations accurately. Fig. 1.18 shows the outline of
SEABED [163]. A monostatic antenna is scanned on the z = 0 plane, and the antenna
position is defined as (x, y, z) = (X,Y, 0). At each antenna position, a UWB pulse is
transmitted and the accurate range Z is estimated from the time-delay of the received
signals after appropriate filtering [164]. The transform from the observed (X, Y, Z) to the
target shape (x, y, z) is calculated using the transform called the inverse BST (IBST),
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Figure 1.17: A TR imaging example using a single antenna and multipath by the wall.
Assuming an imaging system composed of an actual antenna and mirror image antennas
made by multipaths and a target (Left), and imaging result (Right) performed in [158].

which is expressed as:

x = X − Z∂Z/∂X
y = Y − Z∂Z/∂Y
z = Z

√
1− (∂Z/∂X)2 − (∂Z/∂Y )2

 . (1.34)

SEABED realizes real-time shape estimation because it calculates this equation only after
the ranging process. Moreover, an accurate shape is reconstructed because of the mathe-
matically strict transform of IBST. Based on SEABED, many advanced algorithms have
been proposed to realize improved robustness [52,165] and to estimate using a variety of
antenna locations [166,167].

Although these conventional SEABED-class algorithms assume a wide scanning an-
tenna or a large antenna array and a fixed target, extended algorithms for imaging a
moving target are proposed using a small number of fixed antennas [168–172]. Matsuki
et al. [169] proposed an extended SEABED for two-dimensional high-resolution shape
estimation of a target with an arbitrary translational motion. Fig. 1.19 shows the basic
concept of the extended SEABED. The focus of this method is the equivalence of an an-
tenna scanning and a target motion. In this method, the target motion is estimated using
the ranges obtained at three receiving antennas, and the equivalent antenna position X ′

is then determined based on the estimated motion. Finally, a target shape is estimated
using IBST from (X ′, Z) to (x, z). This method has already been extended to arbitrary
motion including rotation [170] and a three-dimensional problem [171]. These algorithms
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Figure 1.19: Relationship between a motion and an equivalent antenna scanning in the
extended SEABED for a moving target [169].

realized high-resolution and real-time shape estimates of a moving target, whose accuracy
was on the order of 1/100 of the center wavelength of the transmitting pulse.

However, because these algorithms consider only a simple and single target, it is
difficult to apply these to complex targets such as the human body. The important feature
of the SEABED-class algorithms is that they positively use range information acquired as
peaks of the received signals. Because the shape of a human body is so complex, however,
separation of echoes from various body parts is required for these algorithms. Several
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approaches to extract a complex boundary were presented in [173–175]; however, their
accuracy was insufficient for human imaging and an application to a moving target has
not yet been reported.

1.4.4 UWB Doppler Radar Imaging

UWB Doppler radar is a combined technique of UWB and micro-Doppler radars, and
has the advantages of both techniques: high-resolution capability and real-time motion
recognition. Moreover, it is realized with a simple system, because it can obtain motion
information with fixed antennas, similar to the CW micro-Doppler radar and SEABED-
class algorithms. Recent popular application of the UWB Doppler radar is vital-sign
monitoring [176–179]. These methods detect respiration and heart beat frequencies from
micro-Doppler frequencies corresponding to breast motion, and estimate location by the
delay of the detected signals. However, because the main purpose is to estimate respi-
ration and heart beat frequencies, a precise positioning is not realized and an imaging
application is not considered. Moreover, the applications of these methods are limited to
sitting or sleeping subjects with slight movements, which is not a realistic assumption.
Many researchers have challenged the application of UWB Doppler radar to a human
with arbitrary motion including the detection of micro-motions using the time-frequency
analysis described in Section 1.3.2 and ranging techniques using UWB signals described in
this section [179–183]. The experiments and simulations in these papers estimated ranges
for a moving human target, and qualitatively confirmed motion features from the spectro-
grams. Fogle and Rigling [179] proposed a ranging method for UWB Doppler radars using
nonlinear least squares and expectation-maximization algorithms, and achieved accurate
ranging of pedestrians moving in various directions. However, this method only acquires
range information and is not able to provide shape information. Estimates of detailed
shape/motion and their parameters have not been reported. Thus, the UWB Doppler
radar techniques are still not suitable for human imaging and identification applications.

UWB radar has great potential for high-resolution imaging indicated by the SEABED-
class of algorithms. In addition, the Doppler radar interferometry described in Section
1.3.4 can realize motion recognition and DOA estimations with real-time processing.
Based on these, we can predict that high-performance human imaging satisfying the
requirements of surveillance and monitoring systems is realized using the information of
shape and motion, and these are obtained using Doppler radar interferometry and high-
resolution range estimates using UWB pulses. This thesis thus deals with the combined
technique of UWB Doppler radar and interferometry techniques to achieve high-resolution
and real-time human imaging with small physical packaging. This combined technique is
termed UWB Doppler radar interferometry, and is the focus of this thesis.
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1.5 Targets of the Present Work

The targets of the present work are the development of human imaging algorithm, and the
proposition of human identification algorithms using obtained images. The present study
focuses on satisfaction of requirements of human monitoring systems described in Section
1.1 using UWB Doppler radar interferometry. Fig. 1.20 shows an outline of this thesis and
a relationship between the present study and the conventional studies. Concrete targets
of performance are summarized as:

• Shape and location of humans are obtained with a resolution with an order of 1 cm
(or smaller than it).

• Acquired images are applicable to identification of several humans with various
motions.

• Input time duration and total calculation time of imaging and identification pro-
cesses are both within 1 s.

• These performances are realized with small number of antennas and narrow scanning
area.

In this thesis, the high-resolution and real-time human imaging algorithm is firstly pre-
sented. The characteristics of UWB Doppler radar interferometry are investigated, and
human imaging algorithms are proposed, which can solve several problems using this
technique. Moreover, classification and separation algorithms for pedestrians based on
the estimated human images are proposed.

In Chapters 2 and 3, the proposed high-resolution and real-time human imaging algo-
rithms and their effectiveness in realistic environments are presented. Chapter 2 describes
a high-resolution imaging algorithm using UWB Doppler radar interferometry, and shows
its applications to multiple moving targets. A system configuration and basic imaging
algorithm is first explained. As in CW Doppler radar interferometry explained in Section
1.3.4, targets are resolved in time-frequency analysis, and DOAs corresponding to each
resolved target are estimated using interferometry. For the purpose of high-resolution
imaging, the use of SPWD for time-frequency analysis is first considered. Moreover, to
achieve range estimation with a resolution smaller than a pulse width, a range interpo-
lation technique is introduced. An imaging example of a few revolving targets in a two-
dimensional problem is shown for simplicity. The performance evaluation with numerical
simulations and experiments verifies that the proposed algorithm achieves high-resolution
shape estimation. Moreover, the performance of SPWD and SDFT are compared, and
suitable conditions for each method are discussed. Based on the above investigations,
UWB Doppler radar interferometry is applied to a numerical human model composed of
multiple scatterers, and the imaging performance is clarified.
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Figure 1.20: Outline of this thesis and relationship between the present study and the
conventional studies described in Sections 1.3 and 1.4.

Chapter 3 presents the proposed human imaging algorithm for realistic situations.
First, the false image examples in human imaging using UWB Doppler radar interferom-
etry with experimental data are shown. With the results from this experiment and the
numerical simulation conducted in Chapter 2, it is clarified that these false images are cre-
ated by the interference of body parts. To resolve this problem, the mechanism for these
types of false images is clarified and false image detection and rejection methods using
velocity information are introduced. The experiments assume a pedestrian in an actual
room and show that many false images are rejected by the proposed rejection methods.
The proposed imaging algorithm achieves high-resolution and reliable human imaging in
a real environment. Moreover, it is shown that accurate shape and motion parameters
can be extracted from the estimated human image, and the proposed algorithm also re-
alizes real-time imaging. Finally, the imaging examples of pedestrians walking in various
directions are shown.

In Chapters 4 and 5, examples of human identification applications based on imaging
results are presented. Chapter 4 describes an accurate and real-time pedestrian classi-
fication algorithm based on radial velocity features of UWB Doppler radar images. A
classification of three groups of pedestrians is considered, mainly in a hospital monitor-
ing environment: a normal pedestrian group, a group using crutches and a group with
wheelchairs. In addition, a classification of more detailed pedestrian types is presented.
Three types of human gait for the normal pedestrian group are assumed: with both arms
swinging, holding a bag with one hand, and without swinging arms. The target group
with wheelchairs is composed of two types: a pedestrian pushing a person in a wheelchair
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and a person pushing himself or herself in a wheelchair. The classification of these three
groups and six types of pedestrian targets is dealt with. Imaging results of these types
of pedestrian with UWB Doppler radar are obtained experimentally, and the features of
each pedestrian image are discussed. A feature parameter extraction algorithm from the
estimated images and their radial velocity distributions are proposed, and a classification
algorithm using these parameters are described. The experimental results show that ac-
curate classifications of three groups and six types of pedestrians with real-time procedure
are achieved.

Chapter 5 considers image separation and identification of two closely spaced pedes-
trian targets. First, the imaging example is shown of two pedestrians, the distance be-
tween whose torsos is relatively small, and a simple image separation method based on
range profiles is introduced. This method is applied experimentally, and the separation
accuracy of closely spaced pedestrians is found unsatisfactory. To solve this problem, an
accurate separation method using a SVM is then proposed. An extraction method for
training data based on range profiles is proposed, and the images are separated using the
separation plane determined by the SVM using extracted training data. In addition, a
method for rejecting false points existing around the separation plane is proposed. Ex-
periments show that this method achieves accurate image separation and identification
for various positions of two pedestrians.

Concluding remarks are given in Chapter 6. An overview of the proposed algorithms,
their performance, and an achievement evaluation are given, and future developments for
advanced monitoring systems are suggested.
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Chapter 2

High-Resolution Imaging Algorithm
for Multiple Moving Targets

2.1 Introduction

As described in the previous chapter, the UWB Doppler radar using interferometry tech-
niques should have great potential in providing both moving target recognition and high-
resolution imaging. This chapter proposes a high-resolution imaging algorithm with UWB
Doppler radar interferometry, and shows its application examples for multiple moving tar-
gets. The key points of this algorithm are that multiple targets are resolved through peak
extraction from a Doppler frequency spectrogram for each range, and the position corre-
sponding to each peak is estimated using interferometry and a range estimation method
with an interpolation technique. This algorithm also estimates the shape of targets by
compensating for the motion of the estimated scattering centers. For simplicity, we first
consider a 2-dimensional problem, and the imaging of a few targets on a rotating plat-
form. For the purpose of high-resolution imaging, we use the smoothed pseudo Wigner
distribution (SPWD, described in Section 1.3.2) for time-frequency analysis. Performance
evaluations with numerical simulations and experiments verify that the proposed algo-
rithm achieves high-resolution shape estimation for multiple revolving targets. Next, we
compare the performance of SPWD and the sliding-window discrete Fourier transform
(SDFT, described in Section 1.3.2) in the application to revolving targets, and discuss
the suitable condition for each algorithm. Based on this analysis, we then apply the
UWB Doppler radar interferometry to human imaging using a numerical walking human
model composed of multiple point scatterers, and examine the imaging performance and
its problem.
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2.2 Imaging System and Algorithm

2.2.1 System Configuration

Figure 2.1 depicts a schematic of the imaging setup for UWBDoppler radar interferometry.
A transmitting antenna Tx and three receiving antennas Rx1, Rx2, and Rx3 are arrayed
in the xz plane, at positions (x, z) = (d/2, d/2+zc), (-d/2, -d/2+zc), (d/2, -d/2+zc),
and (-d/2, d/2+zc) respectively. The bottom pair Rx1 and Rx2 constitutes a horizontal
interferometer and the pair Rx1 and Rx3 constitutes a vertical interferometer.

The transmitting/receiving signals and the data collection process are described below.
Fig. 2.2 illustrates the time sequence of the received data from a UWB Doppler radar.
The Doppler radar repeats pulse transmissions with an interval of Ts called the inter-pulse
period (IPP). As shown in Fig. 2.2, we define two time variables: t corresponding to the
time of pulse transmission, and τ corresponding to the time of echo reception associated
with range R:

R =
cτ

2
, (2.1)

where c is the speed of light. A transmitting signal sT(τ) is a UWB signal with central
frequency f0 in the form:

sT(τ) = T (τ)ej2πf0τ , (2.2)

where T (τ) is the transmitting waveform. In this chapter, T (τ) is expressed as:

T (τ) =

{
A
2

[
1 + cos

(
πτ
Tp

)] (
|τ | < Tp

2

)
0 (Otherwise)

, (2.3)

where A is the transmitting amplitude and Tp is the pulsewidth determined by the band-
width W . Tp dictates a nominal downrange resolution ∆R. The relationship between
these is:

∆R =
cTp
2

=
c

2W
. (2.4)

If the n-th target is moving with radial velocity vdn, the frequency of the received signal
is shifted by the Doppler frequency fdn = 2vdn/λ. The received signal at Rxi is expressed
as:

si(τ) = e−j2πf0τ
∑
n

αRnsT(τ − τpn)ej2πfdn(τ−τpn), (2.5)

where τpn is the time delay related to the range between the Rxi and the n-th target,
and αRn = ARn/A < 1 is the ratio of the receiving amplitude ARn to the transmitting
amplitude A. We acquire the received signal sik(t) in range bin k using each Rxi by
a discretization of si(τ) in terms of the time delay for all t. The time delay after the
discretization corresponding to range bin k is expressed as τpk = 2k∆R/c. The Doppler
frequency spectrogram is calculated by the time-frequency analysis of sik(t) for all i and
k.
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Figure 2.1: System configuration for UWB Doppler radar interferometry.
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2.2.2 Target Separation with Time-Frequency Analysis

We estimate the time variation of the target’s radial velocity with the time-frequency
analysis, and separate multiple scattering centers using the obtained spectrograms. In
this study, the time-frequency distribution Sik(t, vd) is obtained by either the SDFT or
the SPWD. A performance comparison of these methods shall be provided in Sec. 2.3.3.
The SDFTs of signals sik(t) are calculated with Eq. (1.8) as:

Sik(t, vd) =

∫ ∞

−∞
sik(ν)wH(ν − t)e−j4πνvd/λdν, (2.6)

where wH(t) is the Hamming window function,

wH(t) =

 0.54− 0.46 cos
2π

Tw
t (0 ≤ t ≤ Tw)

0 (otherwise),
(2.7)

In contrast, using Eq. (1.11), the SPWDs of the sik(t) are determined from

Sik(t, vd) =

∫ ∞

−∞

∫ ∞

−∞
e−((t−t′)2/σ2

t )e−((vd−v′d)
2/σ2

v)

·
{∫ ∞

−∞
sik(t+ ν/2)s∗ik(t− ν/2)e−j4πνvd/λdν

}
dt′dv′d. (2.8)

We next extract from the time-frequency distribution the peaks corresponding to the scat-
tering centers. Significant peaks of Sik(t, vd) are extracted using the following conditions:

d|Sik(t, vd)|
dvd

= 0, (2.9)

|Sik(t, vd)|2 > ρmax
t,vd
|Sik(t, vd)|2, (2.10)

where 0 < ρ ≤ 1 is the ratio of the peak extraction threshold power to the maximum
power, and is empirically determined.

2.2.3 Range Estimation with Interpolation Technique with Cal-
ibration Function

Imaging is conducted through position estimations of scattering centers corresponding to
each extracted peak. The position is determined by the range and direction-of-arrival
(DOA). This subsection describes a method for range extraction using an interpolation
technique from the calibration curve. The range R1(t, vdn) is estimated by finding the
range that maximizes the echo intensity:

R1(t, vdn) = ∆R argmax
k
|S1k(t, vdn)|. (2.11)
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To realize high-resolution imaging, however, we must estimate the range to an accuracy
that is better than the nominal downrange resolution because our system assumes that
∆R is of order 10 cm. This resolution is insufficient in estimating human shapes. For
this purpose, the proposed algorithm uses an interpolation between the range gates based
on the echo power ratio around the peak. Fig. 2.3 shows an example of the received
signal and true range R(t, vdn). We estimate R(t, vdn) using the fractional range D(ρp)
determined by a calibration experiment. We first performed calibration experiments, in
which the echo power ratio was measured at the two adjacent range gates around the
peak when the fractional range D (0 ≤ D < ∆R) of a point target was varied. During
calibration, we measured the maximum power P1 of the received signal, and the power
P2, which is the larger value of the adjacent powers of the maximum power point. Then,
the echo power ratio ρp(D) is defined as:

ρp(D) = P1/P2. (2.12)

We use a calibration function D(ρp), which is the inverse function of ρp(D) to determine
the accurate position R(t, vdn) of the target, which is estimated by summing R1(t, vdn)
and the fractional range D(ρp) (see Fig. 2.3):

R(t, vdn) = R1(t, vdn) +D(ρp). (2.13)

2.2.4 Scattering Center Positioning by Interferometry

The elevation DOA θELn and azimuth DOA θAZn of n-th target are calculated from inter-
ferometry:

θELn(t) = sin−1

[
6 S1k′(t, vdn)− 6 S3k′(t, vdn)

(2πd/λ)

]
, (2.14)

θAZn(t) = sin−1

[
6 S1k′(t, vdn)− 6 S2k′(t, vdn)

(2πd cos θELn(t)/λ)

]
, (2.15)

where k′ is the range bin where n-th target is detected. Having acquired R(t, vdn),
θAZ(t, vdn) and θEL(t, vdn), the positions of the scattering centers xs(t, vdn) can be de-
termined:

xs(t, vdn) = xs(t, vdn)
ys(t, vdn)
zs(t, vdn)

 =

 R(t, vdn) cos θEL(t, vdn) sin θAZ(t, vdn)
R(t, vdn) cos θEL(t, vdn) cos θAZ(t, vdn)
R(t, vdn) sin θEL(t, vdn) + zc

 . (2.16)

Finally, we compensate for the motion of the target on the acquired orbit of the scat-
tering centers to acquire shape information of targets. The procedure for the proposed
imaging algorithm with UWB Doppler radar interferometry is summarized in Fig. 2.4.
The proposed algorithm provides not only accurate separation of multiple moving targets,
but also high-resolution shape estimation. Moreover, we can estimate three-dimensional
images using only three receiving antennas.
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Figure 2.4: Procedure within the proposed imaging algorithm using UWB Doppler radar
interferometry.

42



x

y

o

8

[cm]

[cm]

Target 3
4.8

Target 1

(0, 135)

1.6

3.2

dRx1 Rx2 and Tx

Target 2

Figure 2.5: Three revolving targets assumed in the simulation.

2.3 Application to Multiple Revolving Targets

2.3.1 Performance Evaluation with Numerical Simulation

This subsection presents examples of target separation and shape estimation with the pro-
posed algorithm using both numerical simulation and experiment. To begin, an idealized
two-dimensional imaging example is considered in a numerical simulation without noise,
shadowing, and other obstacles. We use a UWB pulse with carrier frequency f0 = 26.4
GHz and a bandwidth W = 500 MHz, corresponding to a range resolution ∆R of 30
cm. The antennas are omni-directional, and their separation d is 5 cm. The setup (see
Fig. 2.5) involves three revolving circular targets of different sizes, one mono-static an-
tenna, and one receiving antenna. The IPP Ts and the observation time are 1.29 ms and
1.32 s. The received signals are calculated using ray-tracing. The calibration function
D(ρp) is numerically calculated. We use the SPWD in this and following subsections to
achieve high-resolution imaging, and we set ρ = 0.2, σt = 3Ts, and σv = 4∆vd, where ∆vd
is the resolution of the radial velocity. The angular velocity of the targets is 1.5π rad/s
and the center of rotation is (x, y) =(0, 1.35 m). This simulation assumes that motion of
targets (revolving) and their parameters (the angular velocity and the center of rotation)
are known and the shape and number of targets are unknown. We estimate target shape
by compensating for the estimated points using the angular velocity and the center of
ratation.
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Figure 2.6: True radial velocity of the three revolving targets.

The true radial velocities of the targets and the SPWD spectrograms are shown in
Figs. 2.6 and 2.7. The targets are in the range bins 4 (1.2 m) to 5 (1.5 m) in this setup, thus
we have given spectrograms S14(t, vd) and S15(t, vd). The SPWD have obviously detected
the time-varying radial velocities of all three targets accurately. Fig. 2.8 shows a range
estimation result for each extracted vd. As shown in this figure, the ranges of all separated
targets are estimated, and a correspondence between these ranges and radial velocities
vd is correctly confirmed. Fig. 2.9 presents a construction of the orbits of the scattering
centers estimated with the acquired SPWD; accurate locations of scattering centers are
obtained. Fig. 2.10 shows the estimated image compensating for the revolving motion. A
satisfactory high-resolution estimation of the shape of all three targets is obtained. The
root mean square (RMS) error of the estimated image is 0.35 mm. These results indicate
that the proposed algorithm realizes accurate separation of multiple moving targets, and
achieves high-resolution imaging for all targets.

2.3.2 Performance Evaluation with Experiment

In the numerical simulation, accurate images were obtained under several simple assump-
tions. This subsection investigates the performance of the proposed algorithm when using
experimental data. Fig. 2.11 shows the experimental arrangement. We use two circular
stainless steel targets of diameter 6.6 cm placed on a rotating platform. The platform’s
center of rotation is located (x, y) =(0, 1.3 m), and its angular velocity is 1.5π rad/s.
The distance between the center of rotation and the center of the targets is 8 cm. We
use a single transmitter and two receivers; each is horn antenna with -3dB beamwidth of
±11◦. The transmitted pulse and the arrangement of the receiving antennas are the same
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Figure 2.7: SPWD spectrograms of Rx1 in range bins 4 (below) and 5(above) in the
simulation involving three revolving circular targets.

as described in the previous section. Same as the previous section, the angular velocity
and the center of the rotating platform are known, and shape and number of targets
are unknown. The corresponding spectrograms S14(t, vd) and S15(t, vd), (see Fig. 2.12)
demonstrate that the SPWD accurately separates the two targets in a real environment
setting.

First, we determine a calibration function D(ρp) for the range interpolation with a
simple experiment. Fig. 2.13 outlines the calibration experiment. A target is a sufficient
large copper plane. We scan the target in 0 ≤ D < ∆R, and the peak ratio ρp(D) is
measured at each target position. In this experiment, we scan the copper plane in 30 cm
≤ Rcp < 60 cm with steps of 1 cm, where Rcp is a distance between the antenna and the
target. This scanning range corresponds to the fractional range of 0 ≤ D < 30 cm because
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Figure 2.8: Relationship between extracted radial velocities and estimated ranges of the
separated targets.
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Figure 2.9: Estimated orbits of the scattering centers for each target in the simulation.

∆R is 30 cm. Fig. 2.14 shows the observed points and the determined D(ρp) by a fitting
of these data points using seven order polynomial function. Then, distance for each peaks
of Fig. 2.12 are estimated by this function and Eq. (2.13). Fig. 2.15 shows a relationship
between the radial velocity and estimated range. Here, we use in the estimation process
only the points for which signal to noise ratio is relatively high. This is because there
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Figure 2.11: Photos of the experimental setup showing two targets on a revolving disk
and the antenna array.

are distortions in the orbit due to shadowing and interference from the other targets.
Although distortions due to noise and interference are remained, ranges of both targets
corresponding to each radial velocity are estimated.

Fig. 2.16 shows the estimated orbit of the scattering centers. The estimated images
(Fig. 2.17) demonstrates that the proposed algorithm can provide high-resolution image
estimates for both targets. The RMS error of the estimated image is 5.2 mm corresponding
to 1/58 of the nominal resolution determined by the bandwidth. This result means that
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Figure 2.12: SPWD spectrogram of Rx1 in range bins 4 (below) and 5 (above) from
experimental data.

high-resolution images of both targets are accurately estimated.

2.3.3 Performance Comparison of SPWD and SDFT

The high-resolution imaging of multiple revolving targets using SPWD was verified with
the numerical and experimental data. However, the SPWD have two critical drawbacks.
The first is a performance deterioration resulting from cross-terms involving multiple
target signals from multiple frequencies. Fig. 2.18 shows the SPWD spectrogram obtained
from experimental data for the three revolving targets. We used three circular stainless
steel targets, two of diameter 3.2 cm and one of diameter 2.6 cm. The platform’s center
of rotation is located at (0, 1.15 m), and its angular velocity is 1.1π rad/s; the distance to
each target center is 8 cm. As evident in Fig. 2.18, cross-term effects remain, and these
lead to errors in separation and the occurrence of false images. In this case, we confirm
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Figure 2.14: Result of calibration experiment and determined D(ρp).
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Figure 2.17: Estimated images generated with the proposed algorithm using experimental
data of the two revolving targets.

that accurate imaging is not possible because of signal interference from multiple radial
velocities and these cross-terms. Moreover, selection of appropriate smoothing parameters
is difficult for various practical scenarios. Therefore, SPWD may be applicable under
limited situations only.

In contrary, the SDFT does not generate cross-terms [112]. Fig. 2.19 shows the SDFT
spectrogram obtained from the same experiment of Fig. 2.18. Although the resolution
for time-frequency distribution is low compared with that for the SPWD, cross-terms are
not apparent. Fig. 2.20 shows estimated images of these targets. Because the resolution
is low and the amount of interference is large compared with the two-target case, the
imaging area is narrow when compared with that in Fig. 2.17. However, we can provide
reliable multiple target detection even when target separation with SPWD is difficult. In
addition, although the RMS error of the estimated image is 1.5 cm, which is larger than
that in Fig. 2.17 produced from the SPWD due to low resolution from SDFT, we assess
that this accuracy is sufficient for human monitoring. Moreover, from the view point
of real-time capability, SDFT is better than SPWD. The calculation times to produce
Figs. 2.18 and 2.19 are 71 s and 0.22 s, respectively with intel Core 2 Duo 3.33 GHz
processor, stemming from a smoothing process in evaluating double integrals involved in
the SPWD calculation.

The properties for each method are summarized in Table 2.1. The problems using
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Figure 2.19: Summation of SDFT spectrograms of three revolving targets using experi-
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proposed algorithm using SDFT.

Table 2.1: Property comparison for SPWD and SDFT.

Computation time Imaging accuracy Separation capability

SPWD Large Very good Bad

SDFT Small Sufficient Good

the SPWD are the large calculation times and the mis-extraction of peaks due to cross-
terms. In contrast, the SDFT technique produces fast calculations without cross-terms.
Summarizing these discussions, if the number of scattering centers is sufficiently small and
the main purpose is acquiring high-resolution images, SPWD is suitable for this situation.
On the other hand, while fast calculation is required and there are many scattering centers,
SDFT is more suitable and the more appropriate algorithm to be used for our applications.
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Figure 2.21: True target points and their trajectories for a simulation model of a walking
human (Left: Top view，Center: Frontal view, Right: Side view).

2.4 Application to Numerical Human Model

This section investigates the application of the UWB Doppler radar interferometry to
human sensing by means of numerical simulation. Multiple point targets representing
the scattering centers on various parts of the body are assumed. Our simulation uses
twelve points selected from the data points in the ”Motion Capture Data Pack” (Eyse
JAPAN Corporation), which is comprised of motion capture data of pedestrians, and
generates received signals by ray-tracing. The true trajectory of the walker is given in
Fig. 2.21; here Y is the forward direction of the walker and X is the positive (right-
hand) axis perpendicular to the walking direction. The walking speed and period are 1.59
m/s and 1.16 s, respectively. The antenna separation d is 6 mm and the height of the
central antenna position zc is 30 cm. The center frequency and bandwidth are same as
the previous section, and Tp and the observation time are 1.04 ms and 2.1 s, respectively.
Based on discussions in the previous section, we use the SDFT with window width of 66 ms
to determine the time-frequency distribution. The peak extraction threshold parameter
ρ is 0.2.

We estimated the orbit of the scattering centers and the walking velocity based on these
estimated points, and extracted a shape of pedestrian outline with motion compensation
using the estimated walking velocity. Fig. 2.22 shows the summation of spectrograms from
Rx1 for the range bins. We can see the various peaks corresponding to the motions of
the arms and legs. Fig. 2.23 shows the overhead view of the estimated scattering centers.
The orbit of the walking target is confirmed to some extent. We next extract the walking
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Figure 2.22: Summation of SDFT spectrograms of the numerical human model at Rx1
for the range bins.

velocity. An orbit of the torso is estimated as a power-weighted mean of scattering center
positions:

xo(t) =

∫
xs(t, vdn)p(t, vdn)dvdn∫

p(t, vdn)dvdn
, (2.17)

yo(t) =

∫
ys(t, vdn)p(t, vdn)dvdn∫

p(t, vdn)dvdn
, (2.18)

where p(t, vd) is a sum of the received power for range bins at (t, vd) for Rx1. The walking
orbit is then estimated as a low-pass filtering of xo(t) and yo(t). Fig. 2.24 shows the true
and estimated walking orbits. An accurate estimation of the walking orbit is achieved
using the images. The RMS error of the estimated orbit is 5.46 cm. The walking velocity
is estimated from the time-derivative of the walking orbit:

vw(t) =

(
dxo(t)

dt
,
dyo(t)

dt

)
. (2.19)

Fig. 2.25 shows the imaging result obtained after motion compensation using the estimated
vw(t). We can establish an outline of a human shape in the frontal view and the leg and
arm trajectories in the side view. However, many false images are confirmed, especially
among the targets.

55



-1.5 -1 -0.5  0  0. 5  1  1.5  2
 1

 2

 3

 4

 5

x [m ]

y
 [

m
]

Figure 2.23: Overhead view of the estimated scattering centers of a simulated walking
human.

2.5 Conclusions

This chapter proposed a high-resolution imaging algorithm for multiple moving targets
using UWB Doppler radar interferometry. Assuming revolving circular targets, we con-
firmed by simulations and experiments that high-resolution image is obtainable with such
interferometry and the SPWD. The mean error of the estimated image is 5.2 mm, which
corresponds to 1/58 of the nominal resolution determined by the bandwidth. Next, a per-
formance comparison between SPWD and SDFT showed that the advantages of SDFT
are fast calculations and reliable target separations whereas the advantage of SPWD is
its high-resolution capability. Based on this comparison, we judged that SDFT is suitable
for practical use in human sensing. We also investigated whether this technique is suited
for sensing the motion of walking humans. Numerical simulation showed that the scatter-
ing center points of the model can be obtained and the walking orbit can be accurately
extracted with RMS error of 5.46 cm. Moreover, an outline of a human shape can be
extracted by motion compensation using the walking velocity estimated from the walking
orbit. However, many false images are confirmed mainly among the targets. These false
images lead to mis-extraction of human targets, and this problem represents a serious
hurdle in applications monitoring humans. To resolve this problem, we propose in the
next chapter an imaging algorithm that is applicable to more realistic situations.
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Figure 2.24: Estimation of the orbit for a simulated walking target torso.

Figure 2.25: Estimated images a simulated walking human after motion compensation
using walking velocity (Left: Frontal view，Right: Side view).
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Chapter 3

Human Imaging in Realistic
Situations

3.1 Introduction

This chapter presents a human imaging based on the imaging algorithm with the UWB
Doppler radar by means of experiments assuming realistic situations. The experimental
example firstly shows that many false images are estimated owing to interference from
body parts similar to the numerical simulation in Section 2.4. To resolve this problem, the
mechanism of this type of false images is investigated with simple numerical simulation,
and two false image detection and rejection methods that use velocity information are
proposed based on the revealed mechanism. The experiment assumes a pedestrian and
shows that most of false images are rejected by the proposed methods, and the proposed
imaging algorithm achieves accurate and reliable human imaging. Moreover, accurate
shape/motion parameters can be extracted from the estimated human image, and real-
time imaging with sufficient accuracy is demonstrated. Finally, we confirm that the
proposed imaging algorithm is effective to the pedestrians walking in arbitrary directions.

3.2 Human Imaging Experiment

The numerical simulation in the previous chapter indicated that the outline of human
shape is extracted and many false images are estimated with the UWB Doppler radar
interferometry. In this section, we conduct an experiment to investigate the performance
in a realistic situation. The configuration of the experimental system is firstly explained,
and a human imaging result and its problem are then presented.
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Figure 3.1: Block diagram of the spread spectrum UWB Doppler radar.

3.2.1 Radar System Configuration

The transmitting signals of our experiments are spread spectrum UWB signals in order
to acquire sufficient signal-to-noise ratio [184, 185]. Fig. 3.1 shows the block diagram
of the spread spectrum UWB Doppler radar. The oscillator #1 generates a CW signal
with a frequency of f0, and the shift register #2 generates a m-sequence of chip width
tC. The CW signal is modulated with the m-sequence, and this modulated signal is
transmitted by #3. Then, echoes are obtained by the receiver #4, and the delay circuit
#5 generates a time-shifted m-sequence. We take a cross-correlation of the raw received
signal obtained in #4 with this time-shifted m-sequence to acquire the signal with high
signal-to-noise ratio [185]. These processes gives a range resolution of ∆R = ctC/2 [184].
Finally, the received signal waveform sik(t) is acquired with the de-modulation and the
low-pass filtering processes. In our all experiments, the radar parameters are f0=26.4
GHz, tC= 2 ns and ∆R= 30 cm.

Figs. 3.2 and 3.3 show the system model and the experimental site. The antenna
configuration is same as in the previous chapter, and a pedestrian target and measurement
at several antenna positions are assumed. In this experiment, we assume a pedestrian
target on a treadmill with a belt speed of 3 km/h and the distance between the antennas
and the target’s torso is fixed to 2.7 m by using the treadmill to clarify the characteristics
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Figure 3.3: Experimental site of the target on the treadmill.

and problems of the UWBDoppler radar interferometry. The heights of the pedestrian and
the treadmill are 182 and 14 cm. Horn antennas are used with −3dB beamwidth of ± 11◦

in both the E- and H-planes. The antenna separation d is set by consideration of aliasing
and accuracy in the DOA estimation process. As shown in Eqs. (2.14) and (2.15), DOA
estimation accuracy is improved by setting a large d. However, an unambiguous range
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Figure 3.4: Outline of relationship between target and illumination area of transmission
beam.

of DOA is determined by d because of the aliasing. From Eq. (2.14), the unambiguous
range of the elevation DOA is ± sin−1(λ/2d). Consequently, we must choose as large d
as possible, taking the observation area into consideration. Our experiments set d = 3.5
cm, and the unambiguous range of elevation and azimuth DOAs are both ±9.47◦. This
range is sufficient for our experimental setting. The inter pulse period is 1.29 ms, and
the window size for SDFT is 165 ms. We take measurements at three antenna positions
for the acquisition of data that correspond to the whole body : zc=0.56, 1.26, and 1.81
m. Fig. 3.4 shows the outline of the relationship between the target and the illumination
area of the transmission beam at each antenna position. The antennas receive the echoes
mainly from the head in position (i), arms and body in position (ii), and legs in position
(iii). Image is obtained by the superposition of image estimated at each antenna position.

3.2.2 Result and Problem

Fig. 3.5 shows a spectrogram at the range bin 9 (2.7 m) |S19(t, vd)|2 for each antenna
position. The radial velocity variations of the arms and legs are detected at antenna
positions (ii) and (iii), and oscillations of the head and the body are observed at positions
(i) and (ii). Fig. 3.6 shows the human image estimated by the UWB Doppler radar
interferometry described in the previous Chapter. Here, we use the data of half of a
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Figure 3.5: Spectrogram |S19(t, vd)|2 in each antenna position.
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Figure 3.6: Frontal (Left) and side views (Right) of image estimated by UWB Doppler
radar interferometry.

walking cycle for imaging, and set ρ=0.25 which is peak extraction threshold in Eq. (2.10).
This result means that the UWB Doppler radar interferometry obtains a human outline
to some extent even using the experimental data. However, since many false images
are confirmed, we cannot accurately reconstruct the image of the human body from this
result. According to the numerical simulation in Section 2.4 and this experiment, these
false images are caused by the interference of the echoes from multiple scattering centers
corresponding to various body parts.

3.3 False Image Detection and Rejection Method

3.3.1 Mechanism of False Images

To resolve the problem described in the previous section, we propose a false image detec-
tion and rejection method. First, we clarify the mechanism of such false images with a
simple numerical simulation. We assume two point targets that have a pendulum motion,
and set the antenna separation d=5 mm and the center position of the antennas zc=0.
With this antenna setting, unambiguous range of DOA becomes ±π/2. Fig. 3.7 shows the

63



-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0. 8  1

z[
m

]

y[m]

Pendulum motion
(x = 0.25 ｍ)

Target 1

Target 2

Figure 3.7: Orbit of targets and antenna setting in a simple numerical simulation assuming
two point targets that have a pendulum motion.

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-50

-40

-30

-20

-10

 0

t[s]

v
  [

m
/s

]
d

Pow
er[dB]

Target 1

Target 2

Interference

Figure 3.8: Summation of acquired spectrograms for range bins in the simulation of
Fig. 3.7.

orbits of the targets. Omni-directional antennas are assumed, and the received signals
are calculated with ray-tracing. Other radar settings and parameters are the same as in
the previous section. Figs. 3.8 and 3.9 show the spectrogram and the estimated image.
The false images are estimated where the target does not exist. Comparing Figs. 3.8
and 3.9 (b), we find that false images are generated when interference of the echoes has
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Figure 3.9: Estimated image in the simulation of Fig. 3.7.

occurred. The DOA is estimated using the phase difference between two antennas, as
expressed in Eqs. (2.14) and (2.15); however, the phase estimation errors are caused by
interference. Fig. 3.10 (a) shows the outline of the phase estimation error at an antenna,
where the horizontal and vertical axes are the real and imaginary parts of a received sig-
nal. Since this error is occurs at all antennas, the estimated phase differences also have
errors. For this reason, the DOA is estimated in the direction where the target does not
exist. In addition, amplitude variation of the echo leads to fast motion of the false images.
Fig.3.10 (b) shows the effect on the amplitude variation and the phase error that occurred
owing to the amplitude variation. For example, in Fig. 3.8, the amplitude ratio of targets
1 and 2 varies from 1.26 to 1.45 in 0.2 s < t < 0.3 s, and scattering centers corresponding
to these data move at a velocity of approximately 4 m/s. This velocity is greater than the
maximum velocity of the assumed target, which is 2.5 m/s. Therefore, many false images
have a velocity greater than the maximum velocity assumed by the motion type.

3.3.2 False Image Rejection Method using Velocity Information

Based on the above discussion, we propose a false image rejection method. First, we reject
the estimated points with relatively large velocities and remove the images that satisfy
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Figure 3.10: Outline of mechanism of false images.

the following condition:
vmax < |v(t, vd)|, (3.1)

where vmax is the assumed maximum speed, and v(t, vd) is the velocity estimated as the
time-derivative of a scattering center position as:

v(t, vd) = dxs(t, vd)/dt. (3.2)

Next, isolated points are removed. We assume a sphere with radius RF whose center
is at xs(t, vdn), and count the number of scattering centers NF within it. We reject the
scattering centers that satisfy the condition:

NF/NA < α, (3.3)

where NA is the total number of estimated points, and 0 < α < 1 is the threshold ratio
of the number of false points to the total number of points. α is empirically determined
by the spatial resolution.

Fig. 3.11 shows the estimated image after applying the false image reduction method
to the same data as in Fig. 3.6. We empirically set vmax=2.5 m/s, RF = ∆R/10 = 3
cm, and α=0.003. The proposed method removes most of the false images. However,
the estimated region becomes small, because weak echoes from some body parts are also
suppressed by this simple false image reduction method. For example, the echo intensity
from the arms is lower than that from a torso as shown in Fig. 3.5(b).

3.3.3 Adaptive Peak Extraction

For detection of low power echoes, relatively low ρmust be set in Eq. (2.10). However, false
peaks caused by interference are not suppressed when threshold ρ is small. Fig. 3.12(a)
and (b) shows examples of echo peaks estimated for ρ = 0.25 and 0.15. Here, the false
image rejection method described in the previous section is applied. As illustrated in
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Figure 3.11: Frontal (Left) and side views (Right) of estimated image after applying the
false image rejection method.

these examples, number of extracted peaks corresponding to the arms is relatively small
for ρ = 0.25, and many false peaks remained for ρ = 0.15. This is because the threshold
that we used was fixed independently of vd. To resolve this problem, we modified the
Eq. (2.10):

|Sij(t, vd)|2 > ρ(vd)max
vd
|Sij(t, vd)|2. (3.4)

This condition means that threshold ρ depends on vd. In walking motion, for example, the
swinging motion of the arm has large radial velocity compared with the body oscillation.
Thus, if vd is large, ρ(vd) should be small at large |vd| range for the position (ii).

We next explain how to determine the threshold ρ(vd). As discussed above, ρ(vd)
should be changed depending on the echo power. In addition, false echo peaks are not
suppressed by the false image rejection method when ρ is set to be small. Consequently,
if the amount of interference is relatively large, ρ(vd) should be set to a large value. We
divide the radial velocity axis between Nv segments: vdmax − (k − 1)∆vd-vdmax − k∆vd
(k = 1, 2, · · · , Nv)，where ∆vd = 2vdmax/Nv and vdmax is the maximum radial velocity.
The threshold for each segment k is defined as ρ(k∆vd). For each segment k, the following
procedures determine ρ(k∆vd):
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Figure 3.12: Extracted peaks from spectrogram in position (ii). (a) with ρ=0.15, (b) with
ρ=0.25 and (c) with proposed method.

1. Estimate the maximum power density Pmaxk and noise power density PNk, and set
ρk = γPmaxk/PNk.

2. Extract the peaks satisfying Eq. (3.4) for ρ(k∆vd) = ρk and obtain an image.

3. Count the number of points NIk satisfying Eqs. (3.1) and (3.3).

4. Estimate βk = NIk/NAk, where NAk is the total number of estimated points.

5. If βk < βth or NAk = 0, determine ρ(k∆vd)← ρk. Otherwise, ρk ← ρk +∆ρ and go
to 2.

Fig. 3.12(c) shows the peaks extracted using the proposed extraction method. We
empirically set Nv = 16, βth = 0.6, γ = 1/10000 and ∆ρ = 0.01. This figure indicates that
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Figure 3.13: Procedure of proposed imaging algorithm.

peaks corresponding to both the body and the arms are accurately extracted. Moreover,
number of false peaks is reduced compared with the image in Fig. 3.12(b) for a fixed-
threshold ρ = 0.15.

The procedure of the proposed imaging algorithm is summarized in Fig. 3.13. The
proposed algorithm generates images using the UWB Doppler interferometric imaging
algorithm described in Chapter 2 and extracts reliable images using the methods described
in Sections 3.3.2 and 3.3.3.

3.4 Results and Discussion

3.4.1 Human Imaging Results and Performance

Fig. 3.14 shows the estimated image after applying the adaptive peak extraction method
to the data of Fig. 3.11. The estimated region becomes large without increasing number
of false images, and an outline of the human body is estimated. In addition, the proposed
imaging algorithm also acquires the radial velocity of each estimated scattering center.
Fig. 3.15(a) shows the radial velocity of Fig. 3.14. This figure indicates that radial veloci-
ties corresponding to the walking motion were detected. From the data of Fig. 3.14, when
the right foot swings forward, the positive radial velocity corresponding to this motion
is observed, and the left foot has negative radial velocity. In addition, Fig 3.15(b) shows
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Figure 3.14: Frontal (Left) and side views (Right) of estimated image using the proposed
imaging algorithm.

the image estimated from the data of the next half of a walking cycle of Fig. 3.15(a). The
signs of the radial velocities of the legs and arms are reversed compared with Fig. 3.15(a).
This important pedestrian feature is observed.

Next, we investigate accuracy of the estimated image from its side view. We com-
pare the scattering center positions extracted from the video and the image estimated
by the proposed imaging algorithm. A scattering center is the position where a radar
radial direction and a target surface intersect perpendicularly. We calculate such points
from the video. Fig. 3.16 shows the scattering center position extracted from the video
and estimated side views in positions (ii) and (iii). Although many estimated scattering
centers are matched, some imaging points are estimated where scattering centers are not
obtained from the video. In Fig. 3.16(b), the extraction of the scattering centers cor-
responding to shoes from the video is difficult. Thus, we might think that the imaging
points near (y, z)=(2.85 m, 0.4 m) and (2.7 m, 0.35 m) correspond to the shoes. Similarly,
in Fig. 3.16(a), strict scattering center estimation from the body is difficult. However, we
can confirm that many scattering centers are accurately estimated except for such points.
These results verify that the proposed imaging algorithm achieves adequate human imag-
ing in a real environment and can acquire features of the image motion.
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Figure 3.15: Radial velocity of each estimated point.
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Figure 3.16: Estimated points and scattering centers extracted from the video in side
view
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Moreover, we investigate the real-time capability of the proposed algorithm. We used
the data of half a walking cycle (0.78 s) to acquire the image depicted in Fig. 3.14. For
the purpose of real-time imaging, time-variation of the estimated image aquired with the
relatively short-time data is important. Fig. 3.17 shows the time variation of Fig. 3.15(a)
with time steps of 0.1 s at t < 0.7 s. We are able to recognize the motion of each body part
by comparing Figs. 3.17 and 3.15(a). For instance, when the right foot swings forward,
we observe the radial velocity and position variations corresponding to this motion. In
addition, the left foot have negative radial velocity. As discussed above, a pedestrian’s
features are detected in Fig. 3.17. We are able to identify a pedestrian in the real-time
imaging system from these results.

3.4.2 Shape/Motion Parameter Extraction

This subsection describes shape/motion parameter extraction examples. These parame-
ters might be effective for human identification. We extract these parameters: walking
cycle, step, shoulder width, and height. A walking cycle corresponds to two spectrogram
cycles. Hence we estimate the cycle of the spectrogram Ts using the Fourier transform,
and then the walking cycle is estimated as Tw = 2Ts. Next, a walking step is estimated
from Tw and the walking velocity. The walking velocity is estimated by deriving it from
the scattering centers of the body. However, in this study, a pedestrian is walking on a
treadmill; therefore the walking velocity vw is set as the treadmill’s belt speed. Walking
step Aw is estimated by:

Aw =
vwTw
2

. (3.5)

Shoulder width and height are directly estimated from a frontal view of the human image.
The maximum and minimum values of the estimated image in terms of the x axis are
xmax and xmin. Shoulder width Ls is estimated by:

Ls = xmax − xmin. (3.6)

In the same way, height Lh is estimated by:

Lh = zmax − zmin. (3.7)

Table 3.1 shows the true and estimated parameters of a pedestrian target of Fig. 3.3. We
use the same data as in Fig. 3.15. All parameters were accurately extracted.

Next, we demonstrate the parameter extraction for identification of a variety of pedes-
trians. Table 3.2 shows the assumed targets and their heights and steps. We assume three
pedestrian subjects whose heights are different. Each pedestrian walks with three types of
steps on the treadmill. We identify nine types of targets by extracted height Lh and step
Aw and measure them sequentially. The experimental setting and parameters are the
same as in the previous section. Fig. 3.18 shows the relationship between the extracted
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Figure 3.17: The time variation of the estimated human image of Fig. 3.15(a) in t < 0.8s.
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Table 3.1: True and estimated parameters for target of Fig. 3.3.

Parameter True Estimated
Walking cycle Tw 1.44 s 1.50 s

Step Aw 60.0 cm 62.5 cm
Shoulder length Ls 46.0 cm 49.4 cm

Height Lh 182 cm 184 cm

Table 3.2: Assumed targets for the experiment of shape/motion parameter extraction,
and their true heights and steps.

Target A Target B Target C

Height 182 cm 170 cm 158 cm
Step a (small) 46 cm 44 cm 44 cm
Step b (middle) 60 cm 52 cm 52 cm
Step c (large) 67 cm 64 cm 58 cm

Aw and Lh. In this figure, we used the data of a walking cycle to estimate Aw and Lh, and
plot the parameters of five walking cycles for each target. We realized accurate parameter
extraction, and it is easy to recognize that nine types of data were used. The mean errors
of Aw and Lh are 1.45 cm and 4.17 cm. These results verify that accurate extraction of
walking parameters is achieved from the human image estimated by the proposed imaging
algorithm, and target identification with these parameters can be realized.

3.4.3 Application to a Pedestrian Target Walking Toward the
Antennas

In this subsection, we assume an actual pedestrian target without a treadmill, and clarify
the performance of the proposed imaging algorithm in a realistic situation. Fig. 3.19(a)
shows the experimental site. The target walks from (x, y) = (0, 3.9 m) to (0, 1.5 m) with a
walking step of 0.6 m and a mean speed of 0.86 m/s. Height of the examinee is 1.75 m. We
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Figure 3.19: Experimental setup and spectrogram at zc = 0.36 m of a pedestrian target
without a treadmill.

measure at four antenna positions: zc=0.36, 0.82, 1.29, and 1.54 m. We measured data at
not three but four different positions in this case because three antenna positions cannot
cover the whole body when the target is close to the radar system. Fig. 3.19(b) shows
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Figure 3.20: Frontal views of the estimated image without (left) and with (right) the false
image rejection method.

the summation of the spectrograms for all range bins at zc = 0.36 m. The radial velocity
variations of his legs are confirmed, and the offset of the spectrograms corresponds to the
mean walking speed.

Fig. 3.20 shows the frontal views of the estimated image without and with the proposed
false image rejection method using the data of t ≥ 1.5 s. This is because that the SNR
at t < 1.5 s is insufficient for an imaging. Parameters vmax, RF, and α have the same
values as in the previous section. With only UWB Doppler radar interferometry, many
false images are confirmed and human outline is not recognized. In contrast, the proposed
algorithm extracts the outline of the human and the radial velocity features of the walking
motion. These results mean that the proposed imaging algorithm can reject almost false
images and relizes the reliable and high-resolution human imaging in a realistic situaion.
Fig. 3.21 shows the side view of the estimated image by the proposed imaging algorithm.
We can see the walking motion which corresponds to three steps. In z < 0.8 m, the
scattering centers with relatively large velocities corresponds to the swinging of the leg,
and the scattering centers with small vd corresponds to the other leg in contact with the
ground. Moreover, the arm swinging motion is detected as relatively large velocities over
about 0.8 m < z < 1.3 m. These results mean that we can recognize the walking motion
features, and the effectiveness of our proposed algorithm is also confirmed for an actual
pedestrian target without a treadmill.

In addition, the real-time imaging result is presented. Figs. 3.22 and 3.23 show the
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Figure 3.21: Side view of the estimated image shown in Fig. 3.20.

time variation of the frontal and side images of Fig. 3.20 with time steps of 0.1 s. As
shown in these figures, the pedestrian features are even detected using real-time images.
We can confirm that the time variation of the legs corresponding to the walking motion is
the same as in Fig. 3.17. Moreover, as shown in Fig. 3.23, the translation of the body and
the swinging of the hands and feet that accompany the walking are confirmed. The time
variation of the estimated points with a relatively high velocity at z < 0.6 m corresponds to
the forward motion of the foot. These results show that we achieved real-time pedestrian
identification using the proposed imaging algorithm in a realistic situation.

3.4.4 Imaging Examples of a Pedestrians Moving in Various Di-
rections

This subsection shows imaging examples of pedestrian targets having a variety of direc-
tions. The parameters of the radar and the proposed algorithm are the same as in the
previous section. First, we assume a pedestrian who walks away from the radar. The
target walks from (x, y)=(0 m, 1.5 m) to (0 m, 3.9 m) with a walking step of 0.6 m and
a mean speed of 0.86 m/s. The height of the examinee is 1.63 m. Fig. 3.24 shows the
frontal and side views of the estimated image using the data with sufficient signal-to-noise
ratio. This figure confirms that the human outline and the features of walking motion are
obtained same as the example described in the previous section.

77



Figure 3.22: Time variation of the frontal view of the estimated image of Fig. 3.20 in 1.5
s ≤ t < 2.3 s.
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Figure 3.23: Time variation of the side view of the estimated image of Fig. 3.20 in 1.5 s
≤ t < 2.4 s.
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Figure 3.24: Frontal (Left) and side views (Right) of estimated image of a pedestrian who
walks away from the radar along the y-axis.

Finally, we show the imaging results of pedestrians having oblique walking directions.
We assume two scenarios: case A assumes the target walks from (x, y)=(-1.03 m, 2.69 m)
to (1.03 m, 1.51 m) and case B assumes the target walks from (x, y)=(-1.03 m, 2.41 m) to
(1.03 m, 1.79 m). In both scenarios, the mean speed and the height of the target are 0.8
m/s and 1.78 m. Fig. 3.25 shows the top and frontal views of the estimated image for case
A, where X is the axis perpendicular to the walking direction. We use the data which
corresponds to the target within the beam illumination area. Although the number of
scattering centers in the relatively large X is small because of shadowing, a human outline
and walking orbit are sufficiently detected. Fig. 3.26 shows the top and frontal views of
the estimated image for case B. The radial velocities become small compared with case A
because the walking orbit is close to cross-range direction. In addition, the effect on the
shadowing is larger than case A. However, the walking orbit and the human outline are
extracted to some extent. These results indicate that the proposed imaging algorithm is
applicable to target motion with arbitrary directions.
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Figure 3.25: Top (Left) and frontal views (Right) of estimated image of a pedestrian with
an oblique walking direction (case A).
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Figure 3.26: Top (Left) and frontal views (Right) of estimated image of a pedestrian with
an oblique walking direction (case B).
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3.5 Conclusions

This chapter proposed the human imaging algorithm with the UWB Doppler radar inter-
ferometry. The experimental example showed that its use for the human imaging yields
many false images because of interferences of body parts. We then clarified the mech-
anism of such false images, and proposed false image detection and rejection methods
using velocity information. The experiment, which assumed a pedestrian on a treadmill,
indicated that the proposed imaging algorithm achieved adequate and reliable human
imaging. Walking motion features were also confirmed. We also examined shape and
motion parameter extraction, and verified that accurate parameters can be extracted
from the estimated human images. Moreover, we conducted experiments that assumed
an actual pedestrian target without a treadmill. These experiments verified that the pro-
posed imaging algorithm achieved estimation of a human outline and a walking orbit for
the pedestrian targets walking in various directions. In addition, the real-time capabil-
ity of the proposed imaging algorithm was confirmed. As verified in these results, the
proposed imaging algorithm can generate high-resolution, reliable and real-time human
image with a low-complexity system in a realistic environment. For practical use, the
subsequent chapters consider human identification applications based on UWB Doppler
radar imaging results.
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Chapter 4

Pedestrian Classification Based on
Radial Velocity Features

4.1 Introduction

Motion classification is one of important problems for target identification in human
monitoring systems. Many researchers have challenged to realize a classification of a
various motion types using micro-Doppler radars as reviewed in Section 1.3.3. However,
reliable long-term data (at least 2 s [84,103]) and/or complicated procedures were needed
to accurately classify motion with the conventional methods and the accuracy and real-
time capabilities of these methods are therefore inadequate. These were because that they
used only information of the time-frequency distributions. Thus, a utilization of real-time
human images has a great potential to overcome these problems.

This chapter presents an accurate and real-time pedestrian classification algorithm
based on UWB Doppler radar images. We consider a classification of three groups of
pedestrians mainly in a hospital monitoring environment: a normal pedestrian group, a
group using crutches and group with wheelchairs. In addition, we consider a classification
of more detailed pedestrian types. Three types of human gait for the normal pedestrian
group are assumed: with swinging arms, holding a bag with one hand, and without
swinging arms. The target group with wheelchairs is composed of two types: a pedestrian
pushing a person in a wheelchair and a person driving himself in a wheelchair. This
chapter deals with the classification of these three groups and six types of pedestrians.
We experimentally acquire images of these types of pedestrian with the imaging algorithm
proposed in Chapter 3, and discuss the features of each pedestrian image. We then propose
feature parameters extracted from the silhouette of the estimated images and their radial
velocity distributions, and describe a classification algorithm using these parameters and
a k-nearest neighbor (k-NN) algorithm [127] which is explained in Section 1.3.3. The
results reveal that three groups and six types of pedestrians are accurately classified in
real-time by the proposed classification algorithm.
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4.2 Imaging of Various Types of Pedestrians

This section presents examples of imaging various types of pedestrians in the experiment,
and discusses the features of each image. Fig. 4.1 has photographs of the types of pedes-
trians we assumed. This study took into account the classification of three groups and
six types of pedestrians. We assumed three groups of pedestrians: targets in group A
were walking targets with normal leg motion, targets in group B were pedestrians with a
three-point crutch swinging gait, and targets in group C were walking with a wheelchair.
Moreover, target group A had three walking styles: target A-a was a normal pedestrian
who swung his arms, target A-b carried a bag in one hand, and target A-c walked with
his hands in his pockets. Target group C had two target types: target C-a was a pedes-
trian pushing a person in a wheelchair, and target C-b was a person propelling himself
in a wheelchair. All targets walked from (x, y) =(0, 3.9 m) to (0, 1.5 m). The mean
speeds of target groups A, B, and C were 0.8, 0.76 and 0.7 m/s, and they walked at an
approximately constant speed. The parameters of the radar and the imaging algorithm
are same as in Section 3.4.3. We use data corresponding to one cycle of a time-frequency
distribution (corresponding to half of the walking cycle) for imaging and classification.

Fig. 4.2 shows the frontal views of the estimated images for all pedestrian types. As
we can see from Fig. 4.2(a), there is an outline of the human shape in all the frontal views
of the estimated images. Moreover, we can recognize from radial velocity information
that the left leg and the right arm have forward motion in this half of the walking cycle.
Although target A-b has nearly the same properties as target A-a, the number of scattering
centers corresponding to arms is relatively small as seen in Fig. 4.2(b). This is because his
arm-swing amplitude is limited because of having the bag. We can observe the scattering
centers on the bag at approximately (x, z) =(0.25 m, 0.5 m), as shown in Fig. 4.2(b).
Fig. 4.2(c) indicates that scattering centers corresponding to arms have not been acquired.
This is because the peaks corresponding to the arms were not detected because radial
velocities of arms and torso were almost same values due to NAM. Since the UWB Doppler
radar interferometry separates targets based on difference of their radial velocities, the
separation of arms and torso is difficult in this case. We can confirm the images of crutches
and their relatively high velocities that correspond to their forward motion as seen in
Fig. 4.2(d). Although the radial velocities of both crutches have close value, a separation
of these is realized because walking with strict same crutches’ motion is very difficult.
Fig. 4.2(e) shows the scattering centers are concentrated in a relatively narrow region in
terms of both the position and vd. This is because the wheelchair was moving toward
the radar at an approximately constant velocity. The same feature can also be confirmed
in target C-b. Moreover, we can confirm scattering centers that slightly correspond to
arm motion from Fig. 4.2(f) at approximately (x, z) =(-0.2 m, 0.75 m), and the image is
shorter than those of the other types. These results indicate that the method of UWB
Doppler radar imaging extracts various characteristics of pedestrians, and the features of
each pedestrian may be confirmed from the estimated images and vd information.
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Figure 4.1: Assumed pedestrian types.

(a) Target A-a (b) Target A-b (c) Target A-c

(d) Target B (e) Target C-a (f) Target C-b

Figure 4.2: Frontal views of the images for all pedestrian types.
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4.3 Feature Parameter Extraction

4.3.1 Silhouette Extraction from Frontal Image

We propose feature parameters for pedestrian classification in this section. Our proposed
feature parameters are extracted from silhouettes and radial velocity distributions of the
estimated UWB Doppler radar images. First, we extract the shape of an image silhouette.
For example, the important difference between target C-b and others is the height of the
image, and this is estimated as the silhouette’s height. Fig. 4.3 shows an outline of our
proposed silhouette extraction method, which is explained below:

1. Scan an ellipse whose minor axis is parallel to the x-axis and major axis is parallel
to the z-axis in the xz plane. The length of the major and minor axes are defined
as Rz and Rx.

2. Count the number of estimated scattering centers Ns(xec, zec) within each ellipse
whose central position is (xec, zec).

3. If Ns(xec, zec) > γNA, points on the ellipse (xe, ze) are candidates for the silhouette,
where γ is the threshold ratio of Ns to number of the whole estimated points NA.

4. Extract the maximum and minimum xe from the candidate points for each ze, and
these silhouette points are defined as xmax(z) and xmin(z) (zmaxe < z < zmine), where
zmaxe and zmine are the maximum and minimum of ze.

Fig. 4.4 shows the estimated image silhouette of Fig. 4.2(b). We empirically set Rx=2
cm, Rz=10 cm, and γ=0.004. The silhouette of the image is extracted as can be seen
from this figure.

We then extract the parameters for the silhouette shapes. First, the height of the
silhouette is extracted as:

HS = zmaxe − zmine. (4.1)

Next, we extract the width and center of the silhouette in the high and low z regions.
These are used to extract parameters of the radial velocity features, which is described in
the next section. We extract the mean width of the silhouette in the high z region as:

WH = E[xmax(z)− xmin(z) | z > αHHS], (4.2)

where E[X | C1, C2, · · · ] means the average of X which satisfy conditions C1, C2, · · · , and
αH < 1 is a threshold ratio of z to the height HS. A mean center in terms of x in high z
region is estimated as:

xcH = E[{xmax(z) + xmin(z)}/2 | αHHS]. (4.3)

Moreover, we extractWL and xcL, which is determined by using the silhouette that satisfies
z < αLHS in the same way.
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Figure 4.3: Outline of the proposed silhouette extraction method.

Figure 4.4: Extracted silhouette of the image in Fig.4.2(b).
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4.3.2 Parameters of Radial Velocity Distribution in Each Region
of the Image

We propose feature parameters based on the radial velocity features of the estimated
images in this subsection. First, we examine radial velocity distributions in the relatively
low z region to classify target groups A, B and C. Fig. 4.5(a) shows the radial velocity
distributions of the estimated images of Figs. 4.2 (a),(d),and (e) in z < 0.4HS. Targets
A-a and B have a radial velocity spread that corresponds to the forward motion of legs
or crutches. In contrast, the radial velocity spread of target C-a is small because of the
constant speed of the wheelchair. Thus, the standard deviation of the radial velocity
distribution can effectively be used to classify target groups C and A or B. The standard
deviation of the radial velocity distribution in the low z region is determined by:

σL = Std[vd | zs < αLHS], (4.4)

where Std[X | C1, C2, · · · ] is the standard deviation determined by {E[X2 | C1, C2, · · · ]−
(E[X | C1, C2, · · · ])2}1/2. Next, let us consider the classification of target groups A and B.
As seen in Fig. 4.2(d), target group B has an approximately symmetrical distribution with
respect to the z-axis near the floor. In contrast, the targets in group A have asymmetric
distributions to the z-axis corresponding to the asymmetrical motion of legs in half a
walking cycle. Figs. 4.5(b) and (c) show the radial velocity distributions in Figs. 4.2(a)
and (d) for z < 0.4HS and x < xcL − 0.1WL or x > xcL + 0.1WL. The region near the
xcH is excluded because the properties of the left and right sides of the estimated image
are mixed. As we can see from these figures, there is a difference between the averages
of both distributions for target A-a, while target group B does not have any difference
between the distributions of both regions. Thus, we use the average difference for both
regions, which is expressed as:

∆µL =| E[vd | xs > xcL + βWL, zs < αLHS]

− E[vd | xs < xcL − βWL, zs < αLHS)] |, (4.5)

where β < 1 is the threshold ratio of x to the mean width of the silhouette.
Next, we discuss the classification of gait types in target group A. The difference in arm

movements in Figs. 4.2(a), (b), and (c) is detected from estimated images that correspond
to the upper parts of the body. Fig. 4.5(d) shows the radial velocity distributions in
Figs. 4.2(a), (b), and (c) for z > 0.6HS. As we can see from this figure, the standard
deviation of the radial velocity in the high z region is an effective parameter, which is
estimated as:

σH = Std[vd | zs > αHHS]. (4.6)

The asymmetry between motion in the left and right arms is an important feature of
target A-b. Figs. 4.5(e) and (f) show the radial velocity distributions for z > 0.6HS and
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x < xcH − 0.1WH or x > xcH + 0.1WH. Similar to Eq. (4.5), the difference in the average
in the high z region is expressed as:

∆µH =| E[vd | xs > xcH + βWH, zs > αHHS]

− E[vd | xs < xcH − βWH, zs > αHHS] | . (4.7)

In addition, there is a difference in the standard deviation of both regions in target A-b,
which is extracted by:

∆σH =| Std[vd | xs > xcH + βWH, zs > αHHS]

− Std[vd | xs < xcH − βWH, zs > αHHS] | . (4.8)

Targets A-a, -b, and -c are classified with these parameters. Moreover, the target C-b
and others are classified with height HS. Based on the above, we propose a feature vector
that is expressed as:

ψ = (σL,∆µL, σH,∆µH,∆σH, HS). (4.9)

4.4 Classification Using the k-Nearest Neighbor Al-

gorithm

We classified targets using the proposed feature vector extracted from the experimental
results, which is explained in this section. We also explain the classification procedure.
We evaluated the rate of accuracy in classification from the viewpoint of the three groups
and the six types of classifications. The experimental setup and parameters were the
same as those in Section 4.2. The parameters for the process to extract the silhouettes
were the same as those in Section 4.3.1. The threshold parameters for radial velocity
distributions αL, αH, and β were empirically determined as 0.4, 0.6, and 0.1. We assumed
four subjects, and their parameters are listed in Table 4.1. Fig. 4.6 and Table 4.2 show
examples of relationships between the proposed feature parameters extracted from the
data for these subjects and the mean values of these parameters, respectively. We can
see clear diversity between the types of pedestrians. Fig. 4.6(a) shows there are clear
boundary between Target group A or B and C, and (b) shows the clear difference of
Targets in group A. (c) and (d) of this figure also indicate that Targets B, C-a and -b can
be separated with the proposed feature parameters.

The types of pedestrians with the extracted feature parameters were classified with the
k-NN algorithm. As explained in Section 1.3.3, the k-NN algorithm is suitable for classi-
fying multi-classes with simple boundary [127,128]. Thus, this algorithm may be suitable
for the proposed feature parameters because of their clear boundary. The procedure for
classification involves three steps:

1. Prepare the training data set, ψtr.
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Figure 4.5: Radial velocity distributions of the estimated images shown as Fig. 4.2 in
various regions. (a) Target A-a, B and C-a in z < 0.4HS, (b) Target A-a in z < 0.4HS,
and x < xcL−0.1WL or x > xcL+0.1WL, (c) Target B in z < 0.4HS, and x < xcL−0.1WL

or x > xcL +0.1WL, (d) Target A-a, -b and -c in z > 0.6HS, (e) Target A-b in z > 0.6HS,
and x < xcH − 0.1WH or x > xcH + 0.1WH, and (f) Target A-c in z > 0.6HS, and
x < xcH − 0.1WH or x > xcH + 0.1WH.
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Table 4.1: Parameters of subjects.

Subject Height Mean speed Number of data for
number [m] [m/s] each pedestrian type

(i) 1.75 0.83 20
(ii) 1.72 0.78 15
(iii) 1.70 0.86 15
(iv) 1.63 0.74 20
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Figure 4.6: Estimation results of proposed feature paramters with experimental data for
all subjects in Table 4.1.
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Table 4.2: Mean values of proposed feature parameters.

σL ∆µL σH ∆µH ∆σH HS

A-a 0.489 0.643 0.357 0.407 0.0912 1.69
A-b 0.486 0.530 0.238 0.179 0.184 1.70
A-c 0.491 0.677 0.175 0.0736 0.0408 1.69
B 0.489 0.138 0.218 0.0820 0.0507 1.67
C-a 0.127 0.0590 0.108 0.0508 0.0334 1.67
C-b 0.104 0.0518 0.116 0.0557 0.0449 1.16

2. Calculate the Euclidean distance between an unlabeled feature vector, ψ, and all
ψtr.

3. Classify ψ to the label which most frequently appear in k training vectors nearest
to ψ.

We set the data of subject (i) to ψtr, and k=3. How k was set and the number of
training data were determined are discussed in the next section. Table 4.3 shows the
confusion matrix for the classification results for subjects (ii)–(iv). Although there is slight
mis-classification of targets A-a, -b, and -c, accurate classification is generally achieved.
The rate of classification accuracy for the six types is 96.0 %. Moreover, the rate of
classification accuracy is 99.3 % with respect to classification of the three groups. The
input time duration of each set of data is less than 0.8 s, and the average of the total
calculation time for the imaging and classification processes is 0.55 s using an Intel Core
2 Duo 3.33-GHz processor. These results mean that our proposed feature parameters and
classification procedures could accurately classify pedestrians in real-time.

4.5 Discussion

4.5.1 Evaluation of Performance for Quantity of Training Data
and Comparison with Other Classifiers

This subsection discusses our investigations into the performance of our proposed method
of classification with respect to the quantity of training data. Moreover, we compared
the k-NN algorithm with other representative classifiers explained in Section 1.3.3: a
support vector machine (SVM) and a naive Baysian classifer (NBC). This section uses
a soft-margin multi-class SVM with a Gaussian kernel function and a one-versus-one
approach [124]. We investigated the rate of classification accuracy with 1- and 3-NN
algorithms and SVM for the ratio of the quantity of training data to all data. The
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Table 4.3: Confusion matrix. AT represents the actual type, and ET represents the type
estimated by the 3-NN algorithm.

AT \ ET A-a A-b A-c B C-a C-b
A-a 46 4 0 0 0 0
A-b 3 44 3 0 0 0
A-c 0 0 49 1 0 0
B 0 0 0 50 0 0
C-a 0 0 0 1 49 0
C-b 0 0 0 0 0 50

experimental setting, parameters, and the data used were the same as those presented in
the previous section, and the training data set was randomly selected.

Figs. 4.7 and 4.8 plot the relationships between the rate of classification accuracy and
the quantity of training data to classify the six types and three groups, where Ntrain and
Nall correspond to the quantity of training and all data. As seen in this figure, the k-NN
and NBC algorithms classify more accurately than SVM, and 3-NN is better than 1-NN
when the quantity of training data is relatively large. The 3-NN algorithm achieves 99
% accuracy in classifying the three groups when Ntrain/Nall is larger than 15 %, and 95
% accuracy in classifying the six types when Ntrain/Nall is greater than 20 %. The NBC
also realizes accurate classification with almost same accuracy of the 3-NN. However, the
calculation time is relatively large. When Ntrain/Nall is 20 %, the mean calculation time
of NBC and 3-NN are 0.77 s and 0.08 s, respectively. These results mean that the 3-NN
algorithm can classify the pedestrian targets accurately and rapidly with a relatively small
quantity of training data.

Additionally, an important property of the proposed classification algorithm is that
almost same accuracy rate is realized with different training data. For the classification
of Table 4.3, the training data set is the data of subject (i) and Ntrain/Nall is 28.6 %. As
shown in Figs. 4.7 and 4.8, almost same classification rate is realized with approximately
Ntrain/Nall = 30 %, although these examples randomly selected the training data. This
discussion indicates that the the proposed algorithm can realize accurate classification
with training data set extracted from data of arbitrary one subject. This is an important
characteristics in practice.

4.5.2 Assessment of Suitable Parameters

This subsection discusses the parameters we used with our proposed method. First, let us
explain how we set spatial threshold parameters αL, αH, and β. Here, we present ∆µL of
targets A-a and B for each αL as an example. Fig. 4.9 plots the relationship between αL

and the mean value of ∆µL. The difference between the target types is relatively large for
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Figure 4.7: Classification accuracy rate of the six types versus the quantity of training
data.

0.25 < αL < 0.5. Other parameters can be set similarly. Therefore, we can easily choose
appropriate parameters based on a few examples.

We will next discuss k of the k-NN algorithm. Fig. 4.10 plots the relationship between
k and the rate of classification accuracy for the six types. The value of k = 1 or 3 was
better. In addition, k = 3 was better when the quantity of training data was relatively
large. Accuracy deteriorated when k was an even number. This is because the k-NN
algorithm randomly selected a label when the number of classes was the same.

4.5.3 Discussion on Variety of Motions

This subsection will discuss the possibility of classifying other types of targets such as a
person carrying a box on a hand cart, a short person, a person making other movements,
and a person moving in oblique directions. The main characteristic of a target pushing
a hand cart is almost the same as that of target C-a, and the classification of normal
pedestrians and those on crutches is possible using σL and σH. Although target C-b
and others can be classified with HS, it is difficult to classify a short person such as a
child with only this parameter. However, if the short person makes leg or arm movements,
classification using σL and σH is possible. Furthermore, it is plausible to classify a variety of
motion types (e.g. running, sitting, rotating, and jumping [87]). We can easily predict that
the differences in these motion types will clearly be extracted as velocity and silhouette
parameters. For a person walking in oblique direction, human outline and walking features
can be estimated as shown in Sections. 2.4 and 3.4.4. In addition, feature detection of
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Figure 4.8: Classification accuracy rate of three groups versus the quantity of training
data.

Target B becomes easy because the velocity difference between crutches also becomes
large. Consequently, the proposed classification algorithm may be able to apply to the
targets moving in oblique directions.

4.6 Conclusions

This chapter presented an accurate and real-time algorithm of classifying pedestrians. We
first demonstrated that accurate imaging could be accomplished with the UWB Doppler
radar interferometric imaging algorithm for a variety of pedestrian targets, and discussed
the features of each target. Then, effective feature parameters based on UWB Doppler
radar images and their radial velocity features were proposed. The experiments took
into consideration six types of pedestrians (those with both arm-swing, having a bag and
swinging one arm, and no-arm motion, those on crutches and in wheelchairs, and a person
propelling himself in a wheelchair) and we found that they were classified with an accuracy
of 96 % by using the 3-NN algorithm. The total calculation time for the imaging and
classification processes was 0.55 s. Moreover, we revealed that the proposed algorithm
can realize accurate classification with the training data set which is extracted from data
of arbitrary one subject. In addition, an accuracy of 99 % was accomplished in classifying
the three groups (normal pedestrians, those on crutches and both wheelchair groups).
The performance comparison with other classifiers indicated that 3-NN algorithm is an
appropriate algorithm for the classification using the proposed feature parameters with
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respect to both accuracy and calculation time. Furthermore, we clarified how well the
method performed, found suitable parameter settings for the proposed algorithm, and
discussed capabilities in classifying other types of targets.
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Chapter 5

Image Separation Algorithm for Two
Closely Spaced Pedestrians

5.1 Introduction

Although a large number of studies have focused on developing human identification
techniques for monitoring systems using micro-Doppler radars, as described in Chapter
1, most of these conventional methods were designed for a solitary target or targets
sufficiently well spaced. Several researchers proposed methods to classify whether one
or two people are detected [91]. However, their classification accuracy is inadequate and
identification of each person is impossible.

This chapter proposes a solution to these problems with a separation algorithm for
two closely spaced pedestrian targets using high-resolution images acquired using UWB
Doppler radar interferometry. First, an imaging example of pedestrians and a simple
image separation method using range profiles are introduced. This method is applied
experimentally to a group image estimated by the proposed UWB Doppler radar imaging
algorithm and shows that the separation accuracy of closely spaced pedestrians is un-
satisfactory. To solve this problem, an accurate separation algorithm for the targets in
the image using a support vector machine (SVM) is proposed. As explained in Section
1.3.3, the SVM is one of effective discriminant analyses capable of determining non-linear
separating hyperplane [123]. The proposed algorithm uses a training data set extracted
from range profiles. Finally, false points caused by target interference are rejected based
on the separation results. An experiment, which assumes two closely spaced pedestrian
targets, shows that the proposed algorithm achieves accurate separation and identifica-
tion of their images. Moreover, applications with various target positions are described,
their performance established, comparison with other classifiers carried out, and optimal
settings of the proposed separation algorithm derived.
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Figure 5.1: Experimental setup with two pedestrian targets.

5.2 Imaging of Two Closely Spaced Pedestrians

This section describes an experimental setup and imaging result of two pedestrian targets.
Fig. 5.1 shows a photograph of the setup. The setup and parameters of the radar and
proposed UWB Doppler radar imaging algorithm are the same as in the previous chapters.
Two pedestrians walk in phase simultaneously with a gait cycle of 1.25 s and an average
speed of 0.96 m/s. Target 1, 1.63 m tall, walks from (x, y)=(0.25 m, 3.9 m) to (0.25 m,
1.5 m), while Target 2, 1.75 m tall, walks from (x, y)=(-0.2 m, 4.35 m) to (-0.2 m, 1.95
m). The separation of their torsos is approximately 0.44 m. This is a relatively difficult
task for conventional UWB Doppler radar imaging techniques because the separation of
the targets has an insufficient value with a nominal range resolution of 0.3 m. In this
setup, the echoes from many parts of the body of both targets are mixed in the same
range bin (e.g. the right arm of Target 1 and the left arm of Target 2). In addition, they
walk in phase and in the same direction, which is a relatively tough situation to analyze
because the Doppler radar separates targets based on the difference in their motions.

Fig. 5.2 shows the time-variation of the range profile for Rx1 at zc= 0.36 m. Strong
echoes are obtained for t > 1.7 s. From these echoes it is verified that both targets
are walking at an approximately constant speed towards the antennas. Fig. 5.3 shows
the summation of the spectrograms for ranges corresponding to Fig. 5.2. The radial
velocity offset corresponding to the walking speed and the micro-Doppler signatures of
the leg motion are observed. Fig. 5.4 shows a top view of the imaging result. Here, the
data for t > 1.7 s are used because of high signal-to-noise ratio. The scattering centers
corresponding to both targets are confirmed. Next, the problem of determining which
target each scattering center belongs to is considered.
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Figure 5.2: Time-variation of range profile for Rx1 at zc= 0.36 m.
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Figure 5.3: Summation of spectrograms for range from Rx1 at zc = 0.36 m.

5.3 Simple Image Separation Method

This section introduces a simple image separation method for two targets, and confirms
its performance in an experiment. In this method, the estimated scattering centers are
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Figure 5.4: Top view of the estimated image of two closely spaced pedestrians.

separated by identifying a delimiting boundary between the two targets. The delimiting
boundary is extracted as the power-weighted mean of the range profile for each time bin,
which is expressed as:

B(t) =

NR∑
j

j∆R|s1j(t)|2(j∆R)4
/ NR∑

j

|s1j(t)|2(j∆R)4, (5.1)

where NR is the number of range bins. A target label (Target 1 or 2) for each estimated
scattering center xs(t, vdn) is determined by comparison with B(t) and the range R(t, vdn)
as:

label{xs(t, vdn)} =
{

1 (R(t, vdn) ≤ B(t))
2 (R(t, vdn) > B(t)).

(5.2)

Fig. 5.5 shows the top view of the separation result of Fig. 5.4 using Eq. (5.1). Many
separation errors are obtained because the range difference between the targets is too
small compared with ∆R. Fig. 5.6 shows the front views of images separated by the
simple separation method for 1.76 s < t < 2.39 s, corresponding to a single stride, or
half a walking cycle. Although human features are to a certain degree discernible, the
extraction of a human target is difficult because of many separation errors. Thus, a better
separation method for closely spaced pedestrians is needed to achieve greater accuracy.
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Figure 5.5: Top view of the image separation result using the simple method.

5.4 Proposed Image Separation Algorithm

5.4.1 Training Data Acquisition

To accomplish accurate separation of two adjacent pedestrians, an image separation
method using the SVM is then proposed. The SVM is a accurate classifier developed
to create non-linear separation boundary by applying the kernel technique (described in
Section 1.3.3) [123,124]. The proposed algorithm determines the separation boundary of
the estimated scattering centers using a training data set acquired from the estimated
scattering centers based on range profiles. Fig. 5.7 sshows an example of a range profile
when two peaks are confirmed; these peaks mainly correspond to the echoes from the torso
of each target. The data between these peaks correspond to the interference between the
targets. Nevertheless, data on either side of these peaks can be regarded as echoes from
one or other target.

Based on the above consideration, training data are extracted at scattering centers
that exist around the peaks in the range profile. First, the two peaks of the range profile
are extracted for each time bin t. Here, if two peaks cannot be acquired, training data are
not extracted in this time t. Next, it is assumed that the reflected signal from each target
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Figure 5.6: Frontal view of the image separated by the simple method.

is a Gaussian function, and signals shown in Fig. 5.7 are estimated using each peak and
two adjacent range gates around the peak. The estimated signal at t corresponding to
Targets 1 and 2 are denoted as G1t(R) and G2t(R), and the maximum powers of G1t(R)
and G2t(R) are denoted as P1t and P2t. A threshold is set for the acquisition of training
data for Target 1 as the range for which G1t(R) = αP1t hold, where 0 < α < 1 is a
constant. Consequently, the range threshold for Target 1 is determined from:

B1(t) = min
(
G−1

1t (αP1t)
)
, (5.3)

where G−1
1t is the inverse function of G1t and min(·) is a function returning the minimum

value. With B1(t), scattering center information is extracted for the training data of
Target 1 that satisfy the condition:

R(t, vdn) < B1(t). (5.4)

Similarly, the threshold for Target 2 is determined by:

B2(t) = max
(
G−1

2t (αP2t)
)
, (5.5)

and the condition for training data extraction for Target 2 is:

R(t, vdn) > B2(t). (5.6)
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Figure 5.7: An example of a range profile and threshold for training data acquisition.

Fig. 5.8 shows the acquired training data from the data of Fig. 5.5. Since the number of
time bins which can extract two peaks is limited, the amount of training data is small
compared with the amount of estimated data. In this case, the ratio of the quantity of
the training data to other data is 1.0 %.

5.4.2 Image Separation and False Point Rejection

Next, details of the SVM process are explained. A separation boundary is determined
by the SVM from the estimated scattering centers selected as the training data at each
time interval. The method in this study uses the Gauss kernel function, which is known
as a general-purpose function for the SVM [123]. The SVM parameters are set by a grid
search using the two-fold cross-validation approach [124]. Using the determined separation
boundary, the target label is identified for each estimated scattering center except for the
training data. The separation is conducted in the xyt space. This is because pedestrian
targets are assumed where the height differences (z-axis direction) between the targets are
not clear. These separation processes, including training data acquisition, are conducted
for a certain time interval Tin. In this study, Tin is set based on the gate cycle of the
targets.

Image separation is achieved from the above process. However, because of interference
between targets, many false points that do not belong to either target remain near the
separation boundary. Based on the separation result of the SVM, the proposed method
finally removes these false points. First, a sphere centered at xs(t, vdn) with a radius of rb
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Figure 5.8: Top view and ty plane of the estimated image and acquired training data.

in the xytwl space is assumed, where twl = tvwl and vwl is the mean radial velocity for the
estimated scattering center corresponding to Target l (l = 1, 2). Next, the number Nl of
scattering centers which belong to each target within the assumed sphere is counted. If it
is assumed xs(t, vdn) belongs to Target 1, the scattering centers that satisfy the condition
N1/N2 < β as false points are rejected, where 0 < β < 1 is empirically determined. If it
is assumed xs(t, vdn) belongs to Target 2, the scattering centers that satisfy the condition
N2/N1 < β are rejected in the same way.

The procedure for the proposed image separation algorithm is summarized as:

1. Estimate the scattering centers using data whose length of Tin.

2. Obtain a training data set from these scattering centers using only data that can
extract two peaks of the range profiles.

3. Determine the separation boundary with SVM using these training data.

4. Conduct separation using the determined boundary and false point rejection.

5. Iterate these steps until the end of the observation data is reached.

Here, the assumed input time duration Tin is smaller than 1 s.
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5.5 Results and Discussion

5.5.1 Image Separation Example with the Proposed Method

This subsection presents a separation example with the same situation as in Sections 5.2
and 5.3 but using the above-proposed method, and assesses its separation accuracy. The
experimental setup and parameters are same as in Section 5.2. Fig. 5.9 shows the top
view of the separation result using this new method. The data for t > 1.5 s are used,
and α = 0.3, rb = ∆R/10 = 3 cm, and β = 0.3 are set empirically. As shown in this
figure, the proposed method achieves accurate separation. Fig. 5.10 shows that for 1.76 s
< t < 2.39 s, the frontal views of each image are well separated by this method. Although
separation errors between targets still remain, outlines of human shapes are observable.
We can recognize from the vd information that the left leg and the right arm of both
targets are striding forward in this half of the walking cycle. This is a key feature in
walking.

Next, the separation accuracy is quantitatively evaluated. A separation error rate is
defined using a true separation plane in xytwl space. The true separation plane is defined
as the central plane between the assumed true orbits of the targets. The true orbit of
target l is expressed as y = −twl + yl and x = xl. The true separation plane is defined as:

yT(twl, x) = −twl −
x2 − x1
y2 − y1

x+
y1 + y2

2
(5.7)

The number of misclassification points NE using yT(twl, x) are then counted and the
separation error rate is defined as

δ = NE/NAll, (5.8)

where NAll is the total number of estimated scattering centers. δ of Figs. 5.5 and 5.9 are
18.5 % and 4.87 %. Moreover, when calculated, Tin was 0.8 s which is slightly larger than
half the walking cycle, and the total calculation time for the training data acquisition and
classification processes was 0.33 s using an Intel Core i5-2520M CPU 2.50 GHz processor.
These results confirm that the proposed method improves the separation accuracy more
than three-fold over the simple method and accomplishes accurate and real-time image
separation of two closely spaced pedestrians.

5.5.2 Performance Evaluation for Various Target Positions

In this subsection, the performance of the proposed separation method for various target
positions is evaluated. Fig. 5.11 shows the top view of the initial position of the targets.
Here, the distance between the targets is L =67 cm, and the relative positions are varied
by angle θ. The same pedestrian targets as in the previous section are assumed. In all
scenarios, the targets walk 2.4 m in a straight line parallel with the y-axis towards the
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Figure 5.9: Top view of the image separation result with the proposed method.

origin. The parameter α is empirically set for each θ, details of which are discussed in the
next section. Other parameters and the experimental setup are the same as described in
the previous section.

The relationship between θ and δ obtained from the simple and proposed separation
methods, (see Fig. 5.12) shows that the separation accuracy of the proposed method is
better for all θ. However, δ becomes comparatively large for θ = 0 and 90◦. When θ is
small, the range difference between the targets is also small; therefore the extraction of
training data is difficult in this case. When θ is nearly 90◦, Target 2 is obscured by Target
1, and the number of estimated scattering centers for Target 2 decreases greatly. However,
with the exception of these cases, the proposed method achieves accurate separation over
the interval 10◦ < θ < 80◦. These results verify that the proposed separation method
works well for various positions of the pedestrians.

5.5.3 Examination of Suitable Parameters α and β

This section investigates suitable settings for the parameters α and β. First, α is discussed.
Eqs. (5.3) and (5.5) mean that α determines the threshold of training data acquisition.
The separation accuracy depends on the amount of training data. On the one hand, if
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Figure 5.10: Frontal view of the image separated by the proposed method.

a value for α that is too small is set, the amount of training data becomes insufficient.
On the other hand, if α is too large, an improper training data set is extracted through
interferences from the targets. For these reasons, setting an α value is important for
the proposed method. To investigate suitable α, the relationship between α and the
separation accuracy for the various target positions assumed in the previous section, is
estimated.

The separation error rate δ for each α and θ (see Fig. 5.13), shows that optimum values
for α depend on the relative positions of the targets. When θ is small, the appropriate α
also needs to be small because there is an increase in the mis-extraction of the training
data for larger α. In contrast, the optimum α value can be relatively large for large
θ. Sufficiently accurate separation is achieved at α = 0.3 for all θ, hence this becomes
a suitable setting for a wide range of situations. However, if it is recognized that the
range separation between the targets is sufficiently large, the separation accuracy can be
improved by setting larger α values. Thus, a suitable α can be chosen to perform a few
examples for each situation.

Next, the parameter β, which is the threshold in the false point rejection method, is
discussed. If β is too large, too many points are rejected. Conversely, if β is set small,
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many false points near the separation boundary remain. For these reasons, the relation-
ships β − δ, and β and the number of rejected points are important for the appropriate
setting of β. Fig. 5.14 shows these relationships for θ = 47.8◦ and α = 0.3. The im-
provement in the classification accuracy is confirmed when setting a large β. However,
the number of rejected points become excessive when β > 0.4. Moreover, the improve-
ment in δ is relatively small when β > 0.25. Based on these observations, the interval
0.25 < β < 0.35 is determined as a suitable setting. In addition, the same tendency for
the other θ is confirmed.

5.5.4 Performance Comparison with Other Classifiers

Finally, the separation performance is compared with other representative classifiers ex-
plained in Section 1.3.3: a k-nearest neighbor (k-NN) and a naive Baysian classifer (NBC).
Figs. 5.15 and 5.16 are classification results of 3-NN and NBC algorithms with the same
data as in Fig. 5.9. Here, k = 3 is a better setting for k-NN in this case. As can be seen
from these figures, a large number of separation errors compared with SVM are confirmed
for both algorithms. The classification accuracy rate using the 3-NN and NBC are 9.02
and 11.9 %, and these are worse than for the SVM (4.87 %), because the amount of
training data is insufficient for these algorithms. k-NN requires a relatively large number
of training data near the class boundary, but such data are not acquired as shown in
Fig. 5.8. NBC generates many separation errors especially near (x, y) =(0.2 m , 2.5 m)
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because it requires training data evenly distributed in the region where the data exist. In
contrast, SVM can classify with a small amount of training data near the class boundary
because of the perceptron principle. Thus, SVM is the most effective algorithm for the
applications assumed in this chapter.
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5.6 Conclusions

Based on UWB Doppler radar images, an image separation method for two closely spaced
pedestrians has been proposed in this chapter. Its accuracy is demonstrated by its appli-
cation in realistic environments. First, the simple image separation method is introduced,
and the experiment showed that the separation accuracy of adjacent pedestrians was in-
adequate. To achieve better accuracy, the image separation method using the SVM is
proposed. The experiment, involving two pedestrians separated by 0.44 m walking to-
wards the radar, showed that the method achieved image separation. With a down-range
resolution of 0.3 m, features of the pedestrians were evident from images separated by
the method. The separation error rates for the simple and proposed separation methods
were 18.5 % and 4.87 %, respectively. In addition, the input time duration for each sepa-
ration process was 0.8 s, and the total calculation time for training data acquisition and
classification processes was 0.33 s using an Intel Core i5-2520M CPU 2.50 GHz proces-
sor. These results verified that the proposed algorithm achieves accurate and real-time
separation of pedestrians in close proximity. The performance and parameter of the pro-
posed method for various relative positions of the pedestrians are also examined. The
experiments verified that the proposed method worked well compared with the simple
separation method. Finally, a suitable parameter setting was established for the proposed
method that optimizes the training process for the SVM, and clarified the effectiveness of
the SVM compared with other classification algorithms. However, investigation on more
than two targets will be an important future task.
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Figure 5.16: Image separation result using NBC.
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Chapter 6

Concluding Remarks

This thesis proposes a human imaging algorithm with UWB Doppler radar interferome-
try, and presents two types of human identification algorithms based on estimated images,
namely, the pedestrian type classification and the separation of two closely spaced pedes-
trians. The proposed human imaging algorithm achieved high-resolution and real-time
human imaging in a realistic environment. The imaging system was composed of a small
number of antennas. Moreover, the proposed classification and separation algorithms for
pedestrians also work well in real-time. Various investigations of this thesis verified that
the proposed human imaging and identification algorithms can satisfy requirements of the
surveillance and monitoring systems described in Section 1.1.

Chapters 2 and 3 presented the imaging algorithm with UWB Doppler radar interfer-
ometry composed of a small number of antennas. Chapter 2 described the high-resolution
imaging algorithm for multiple moving targets and its application to a few revolving tar-
gets and the numerical human model. The UWB Doppler radar realizes detection of
multiple targets using the differences in their Doppler frequencies and ranges. The pro-
posed imaging algorithm separates multiple scattering centers based on time-frequency
analysis, and estimates the positions of each separated target using interferometry and
a range interpolation technique. The experiment verified that accurate shape estimation
of two revolving targets with the SPWD is achieved. The mean error of the estimated
image is 5.2 mm, which corresponds to 1/58 of the nominal downrange resolution. Next,
a performance evaluation for three revolving targets clarified that SDFT is better than
SPWD when applied to human sensing. Thus, the performance with SDFT was inves-
tigated by means of numerical simulation assuming a walking human model composed
of multiple scattering centers, and showed that the proposed algorithm extracted the
outline of a human shape and its walking trajectory. These investigations meant that
the UWB Doppler radar interferometry using the SDFT can accurately realize human
sensing. However, many false images were confirmed.

Chapter 3 proposed a human imaging algorithm by solving the problem in terms of
false images for a realistic situation. The human imaging result with UWB Doppler radar
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interferometry and the many false images generated by the interference from multiple
targets were also presented with the experimental data. Thus, the mechanism for this
type of false image was clarified, and two detection and rejection methods for these images
were proposed using velocity information. The proposed imaging algorithm is composed of
these methods and UWB Doppler radar interferometry. The experiments, which assumed
a pedestrian target, verified that the proposed imaging algorithm achieves high-resolution
and reliable human imaging in a realistic environment. It is also confirmed that the
identification of pedestrian features is realized with the time-variation of the estimated
image acquired using short-time data of 0.1 s, and this means that the proposed imaging
algorithm has a real-time capability. Moreover, the applications to pedestrian targets
walking in arbitrary directions are presented, and high-resolution and reliable imaging
was realized in all the experimental scenarios.

Chapters 4 and 5 presented the human identification applications based on the UWB
Doppler radar images. Chapter 4 proposed an accurate and real-time classification algo-
rithm for various types of pedestrians. The effective feature parameters extracted from
UWB Doppler radar images and their radial velocity features were proposed. The exper-
iments assumed six types of pedestrians (those with both arms swinging, carrying a bag
and swinging one arm, and no arm motion, those on crutches and pushing wheelchairs,
and a person propelling himself in a wheelchair) and verified their classification with an
accuracy of 96 % is accomplished using the k-NN algorithm. Moreover, the total calcu-
lation time for the imaging and classification processes was 0.55 s with an Intel Core 2
Duo 3.33-GHz processor and the input time duration for each set of data was less than
0.8 s. These mean that the proposed classification algorithm has real-time capability. In
addition, an accuracy of 99 % was achieved for the classification of three groups assum-
ing hospital security systems (normal pedestrians, those on crutches and both wheelchair
groups). The proposed algorithm is based on accurate shape/motion information obtained
from UWB Doppler radar interferometry, and thus has great potential for the classifica-
tion of other various motion/target types. Furthermore, we revealed that the proposed
algorithm only needs training data set which is extracted from arbitrary one subject.

Chapter 5 demonstrated the image separation and identification of two closely spaced
pedestrians. The proposed algorithm applies the SVM to the scattering centers estimated
by UWB Doppler radar interferometry. The training data set for the SVM is extracted
from the range profiles. The experiment, which assumes two pedestrians with a body sep-
aration of 0.44 m, showed that the proposed method accurately separated their images
using UWB Doppler radar with a nominal down-range resolution of 0.3 m. The features
of each target were confirmed in the separated images. The separation error rate for the
proposed separation algorithm was 4.87 %. This was better than the simple separation
method using the range profiles, whose separation error rate was 18.5 %. The input time
duration for each data set for the separation process was 0.8 s, and the total calculation
time for the training and separation processes was 0.33 s with an Intel Core i5-2520M
CPU 2.50 GHz processor. Moreover, the effectiveness of the proposed method for var-
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ious relative positions of the two pedestrians is confirmed. These results verified that
the proposed algorithm achieves accurate and real-time separation of two closely spaced
pedestrians and their identifications based on UWB Doppler radar images in real-time.

The targets of the present study described in Section 1.5 are practically accomplished
with the proposed UWB Doppler radar interferometric imaging and identification algo-
rithms. The proposed algorithms can realize real-time human remote sensing in input and
calculation time of less than 1 s, and can produce high-resolution images whose accuracy
is order of 1 cm and accurate identification results with these images for targets with
various movements. However, applications to more than two targets are not considered
in Chapter 5. For this purpose, an advanced algorithm based on the proposed image
separation algorithm should be developed.

Moreover, one of the important future directions of study is the realization of a sim-
pler system using adaptive antenna techniques [186]. In the present study, measurements
were conducted with several antenna positions to acquire data on the whole body and
a sufficient scanning area was thus required. One of the solutions to this problem is
to use wide-directivity antennas. However, the amount of interference increases because
the number of targets is also increased in the beam illumination area. To resolve these
problems, adaptive antenna techniques should be an effective approach. This technique
can scan beams electrically without mechanical scanning, which leads to smaller physical
packaging. Thus, development of a combined system of UWB Doppler radar interferom-
etry and these techniques is an important future task.

The important goal of the present study is implementation of UWB Doppler radars
to intelligent robots. For robot monitoring systems, both sensing targets and radars
have arbitrary motion. Thus, another possible topic for future work is to investigate
the performance when the radar system is moving. The rejection of clutter will be an
important and difficult problem in this case, and finding a solution to this problem is also
an important future work. The use of both high-resolution UWB Doppler radar imaging
and adaptive antenna techniques can be considered as an effective approach.

Furthermore, this thesis presented sensing techniques using only the UWB Doppler
radar, but fusion systems with various sensors described in Section 1.2 may realize moni-
toring systems with higher performance. Additionally, the proposed algorithms can apply
not only surveillance systems and moving robots but also other applications such as au-
tomotive radar, space observations, and medical imaging. Consequently, long-range goals
are developments of advanced sensing systems including consideration of sensor fusion
techniques for various applications.
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