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Preface
The modern weather forecast is made through the combination of the initial condition
from the currently observed state and the numerical model of the atmosphere calculated
using the given initial conditions. The accuracy of the prediction is highly sensitive to
errors in the initial conditions, especially for the long term forecast. Hence, the quality
of observed data is the key to improve the accuracy of numerical model predictions.

Wind velocity is one of the important values for the initial conditions of numerical
weather predictions, which is mainly obtained by ground-based radars. These radars
observe the weak backscattered radio waves from the irregularities of refractive index
in the atmosphere. However, radio waves spreads in all directions and are backscattered
by various objects, e.g., the ground or water surfaces, aircrafts, birds, and other natural
phenomena which are not of interest. Thus, the returned atmospheric signals are always
contaminated by interference from undesired directions, called clutter. Among various
clutter, ground clutter can cause severe biases in estimated wind velocities, because it
semipermanently exists with much higher intensity than atmospheric signals. Therefore,
ground clutter suppression is critical for accurate wind measurements using radars.

Modern radar systems for wind measurements generally employ the pulse Doppler
radar, which can observe the radial wind velocity using the Doppler effect. To ob-
tain the mean Doppler shift, the spectral fitting method is usually used, assuming the
atmospheric spectral shape to have some statistical distributions, e.g., Gaussian. In this
method, the effect of the ground clutter is relatively small when observing the off-vertical
directions, because the radial Doppler velocity becomes sufficiently larger than zero, en-
abling the spectral filtering for the ground clutter. However, when observing the vertical
wind velocity, the spectral peak usually exists near the zero Doppler component, because
the vertical wind velocity is typically very small. In this case, the ground clutter becomes
serious problem, e.g., disabling the use of the point with the highest signal-to-noise ratio,
or obscuring the entire atmospheric spectrum with the spread clutter spectrum caused by
the fading.

Recently, advanced computing technologies have enabled the real-time adaptive sig-
nal processing of the observed data from the multiple spatially distributed receivers.
Particularly, in large atmospheric radars, phased antenna arrays have been commonly
used in order to realize the rapid beam steering and large antenna aperture at the same

x



time, thus making the system well compatible with such adaptive beamforming tech-
niques. By employing these methods on the phased array systems, one can suppress
the interference signals from different directions than the desired one by synthesizing
the output signals of each receiver with appropriate weighting in amplitude and phase,
which is determined from the observed data itself.

One of the difficulties in adaptive beamforming is balancing the clutter suppression ca-
pability with the loss of signal detectability. The basic methodology for adaptive beam-
forming on atmospheric radars is the linearly constrained power minimization technique.
This method finds the optimal weighting for each receiver that minimizes the total output
power of the array under certain constraints, i.e., keeping the response to the desired di-
rection. By employing the optimal weight, an optimal reception beam pattern is formed
to suppress only the clutter signal with its mainlobe directed to the desired direction
and its nulls directed to the incident angles of the interference. However, this method
only works fine if the directional constraint is consistent with the actual incident angle
of the desired signal and the desired signal power is sufficiently weak. Otherwise, the
desired signal is suppressed as well as the clutter signal, or the background noise power
is enhanced to degrade the signal detectability.

To prevent such a signal loss, additional constraint about the increased noise power,
called the norm constraint, has been introduced. Although this modification was con-
firmed to be effective by applying it to observations of large atmospheric radars and
weather radars, it was also shown that, in some situations, the norm constraint may be
too strict in preventing the noise power increase to suppress the strong clutter. Because
this residual clutter also degrades the signal detectability, the more universal algorithm
that can balance the clutter suppression capability with the loss of signal detectability
has been desired. Furthermore, the suitable array design and the element directional
gains for adaptive beamforming on atmospheric radars have not been throughly studied.

This thesis presents two techniques that address these problems. The first one is the
optimal array design guideline for atmospheric radars using adaptive beamforming. The
key concept is the partial adaptive array, i.e., the large main array supplemented by small
sidelobe canceller array. The optimal element gain functions for elements of the side-
lobe canceller array is also considered. The second one is a novel clutter suppression
algorithm. This method evaluates the clutter suppression capability and the noise power
increase separately, and determines the optimal weight by balancing these two quanti-
ties. The method has the universality and robustness against the variation of signal or
interference power.
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List of common symbols

Following symbols are used in multiple chapters throughout this thesis. Each chapter
also introduces their meaning at the first usage. Some symbols have more than one
usage; their meaning is generally clear from the context.

(·)∗ complex conjugate
(·)T matrix transposition
(·)H matrix conjugate transposition (Hermitian matrix)
⟨(·)⟩ ensemble average
α diagonal loading value (pseudo noise)
γ forgetting factor, weighting factor
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θ zenith angle
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µ mean
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Chapter 1

General Introduction

1.1 Introduction
Radar remote sensing of Earth’s atmosphere has become all the more important for both
monitoring the global climate changes and predicting natural disasters caused by abnor-
mal weathers. Among the various instruments, ground-based radars have the capability
of continuously observing the wind velocities in wide height range or area with high
temporal and spatial resolutions. However, because radio waves spread in all directions,
interference from undesired directions, called clutter, becomes a serious problem. Typ-
ically, the source of clutter is a hard target, e.g., the ground surface, building, aircrafts
or birds. Because atmospheric backscattered signals are extremely weak compared to
those from such clutter sources, the clutter can obscure the desired signal, or bring intol-
erable biases in wind measurements. Thus, signal processing techniques for extracting
the desired information have been extensively studied, such as high-pass filtering in time
or frequency domain and spectral fitting. More recently, advanced computer technolo-
gies have enabled the software synthesis of the output signals of phased antenna arrays
determining the appropriate weights for phases and amplitudes using the observed data.
This technique is called adaptive beamforming, which is considered to be the promising
countermeasure in clutter suppression of modern radar systems.

The goal of this thesis is to propose a novel adaptive clutter suppression algorithm for
atmospheric radars, as well as the suitable array design for this purpose. This chapter
provides an overview of the theory and signal processing techniques used in atmospheric
radars. In sections 1.2 and 1.3, fundamentals of the pulse Doppler radars and phased
antenna arrays are presented. In section 1.4, radar observation of Earth’s atmosphere,
as well as various clutter and noise sources are briefly reviewed. In section 1.5, data
acquisition and signal processing procedures on atmospheric radars are described. In
section 1.6, the conventional clutter suppression techniques are presented. Finally, in
section 1.7, basic methodologies of adaptive beamforming is explained.
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1.2 Fundamentals of pulse Doppler radar

1.2.1 Radio waves
Radio waves are electromagnetic radiation that have frequencies f from 3 kHz to 3 THz.
They travel at the speed of light in vacuum, c0, which is defined as c0 = 299792458ms−1

without uncertainty. In other medium, it is slightly changed because of the different mag-
netic permeability and electric permittivity, although the speed of light in the Earth’s
atmosphere, c, is very close to c0. The wavelength λ can be written by using f and c as
follows:

λ = c/ f . (1.1)

1.2.2 Radar basics
Radar (or RADAR: radio detection and ranging) is an instrument that uses radio waves
to detect a target, measure the distance or direction to the target, or estimate the shape
of the target. Figure 1.1 describes the basics of a radar system. A radar transmits radio

Signal 

Processor 

Transmitter 
Target 

Receiver 

Analysis 

Tx Antenna 

Rx Antenna 

Transmitting Code 

Figure 1.1: Basics of a radar system.

frequency (RF) signals from transmitting (Tx) antennas to the region of interest. The
transmitted radio waves propagate through medium (e.g., atmosphere, water, or vac-
uum), and induce currents on the surface of targets in ahead of the radar. This induced
currents reradiate radio waves, and some of them are returned to the radar. This process
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is called backscattering. The backscattered radio waves travel back again, and are in-
cident on the receiving (Rx) antennas. Note that Tx and Rx antennas may be the same
antennas; in such systems, transmitted and received RF signals are separated by a switch
and circulator. The incident radio waves induce currents on the Rx antennas again, and
the signal is detected by the receiver. Further signal processing may be performed on
the received signal, e.g., pulse decoding and Fourier transform.

1.2.3 Ranging
To measure the distance to a target from the radar, the time of flight of a pulse is generally
used in pulse Doppler radars. As mentioned above, radio waves travel at the speed of
light, c. Hence, the range to the target from the radar, r, can be written as follows:

r = 0.5cT , (1.2)

where T is a duration between transmitting and receiving an RF pulse, i.e., for a round
trip. In practice, RF pulses are not ideal impulses, causing an uncertainty in the deter-
mination of the range to a target. Let ∆T be the pulse width, i.e., the duration of the
high voltage in transmitted pulse. The range resolution, ∆r, is then written in the same
manner as Eq. (1.2):

∆r = 0.5c∆T . (1.3)

1.2.4 Doppler velocity measurement
If the target is moving, the Doppler effect may be observed in backscattered radio waves.
Let v be the speed of the target projected onto the line of sight from the radar to the target.
The frequency of the backscattered signal is subject to the following relationship (e.g.,
Richards et al., 2010):

f ′ =
c+ v
c− v

f =
1+ v/c
1− v/c

f (1.4)

= (1+ v/c)
(
1+(v/c)+(v/c)2 + · · ·

)
(1.5)

∼
(

1+
2v
c

)
f , (1.6)

where f ′ is the frequency of the received radio waves. Equation (1.6) is derived by an
assumption v ≪ c. The Doppler frequency shift fd is then obtained as the difference
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between f ′ and f :

fd = f ′− f =
2v
c

f . (1.7)

The mean Doppler velocity vd is given by (e.g., Richards et al., 2010):

vd =−λ
2

fd =− λ
4π

ωd , (1.8)

where ωd = 2π fd is the Doppler angular frequency. The maximum Doppler velocity
vdmax observable without aliasing is limited by the Nyquist frequency fdmax determined
by the pulse repetition interval (PRI) Tp:

fdmax =
1

2Tp
, (1.9)

vdmax =
1
2

λ fdmax =
λ

4Tp
. (1.10)

In actual, the Doppler frequency shift fd cannot be obtained by monitoring a single
voltage time series, because phase rotation and amplitude variation cannot be distin-
guished. Thus, the coherent director is generally used, which is illustrated in Fig. 1.2.
Here, ω0 is the angular frequency of the radar system, A is the amplitude of the received
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Figure 1.2: Coherent detector.

voltage signal, and ϕ is the phase of the received voltage signal. In coherent detection,
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the received signal is mixed by the reference signals generated by the local oscillator;
one has a phase without modification and the other has a delay of 90◦. These two chan-
nels are called in-phase (I) and quadrature-phase (Q) channels, respectively. Discrete
time samples from both I and Q channels construct a complex time series x(k) called
analytic signal:

x(k) = A(k) [cosϕ(k)+ j sinϕ(k)] = A(k)expjϕ(k) , (1.11)

where A(k) and ϕ(k) is the discrete time series of amplitude and phase. By using
Eq. (1.11), the amplitude A(k) and phase ϕ(k) can be separately measured. The Doppler
frequency shift fd can then be observed using successive samples of ϕ(k). Suppose the
interval of two adjacent samples is ∆t, and the radial velocity of the target is vd . The
distance of which the target travels in ∆t is v∆t. The observed phase rotation can be
related with this distance by the following expressions:

λ
2π

[ϕ(k)−ϕ(k−1)] = vd∆t =−λ fd∆t
2

, (1.12)

∴ fd =− 1
π∆t

[ϕ(k)−ϕ(k−1)] . (1.13)

Here, in Eq. (1.12), the relationship in Eq. (1.8) is used. Equation (1.13) indicates that
the Doppler frequency shift can be obtained by measuring the phase rotation in the time
series of the analytic signal.

1.2.5 Radar equation
The radar range equation is a useful tool to estimate the received echo power. For small
distributed targets, the radar range equation is written as (e.g., Fukao et al., 2014):

Pr =
PtGAe

(4π)2r4V η , (1.14)

where Pr is the received power, Pt is the transmitted power, G is the Tx antenna gain, Ae is
the Rx antenna aperture, r is the distance to the target, V is the radar volume illuminated
by the Tx beam, and η is the radar reflectivity which is the radar cross section per unit
volume.

In atmospheric radar, the radar volume V can be considered as a circular truncated
cone, which is the shaded area in Fig. 1.3. In this case, the half taper angle of the cone
is θb, which is approximately equivalent to the half power half width (HPHW) of the
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Figure 1.3: The radar volume.

radar beam. ∆r is the range resolution which is derived by the Tx pulse width ∆T using
Eq. (1.3). The radar volume V is then written as:

V ∼ πθ 2
b r2∆r , (1.15)

for ∆r ≪ r and small θb.
The effective aperture Ae and the beam width θb has the following relationship (Richards

et al., 2010):

θ 2
b = γb

λ 2

Ae
, (1.16)

where γb is the beam width factor. The gain G and Ae also have the well-known relation-
ship (Richards et al., 2010):

G =
4π
λ 2 Ae . (1.17)
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Note that Ae0 = λ 2/4π is the effective aperture of an isotropic antenna. Substituting
Eqs. (1.3) and (1.15) to (1.17) into Eq. (1.14) yields:

Pr = δb
PtAe∆T

r2 η , (1.18)

where δb = γbc/8 is a constant. As in Eq. (1.18), the power of received signal is propor-
tional to the transmitted power Pt, the effective antenna aperture Ae, and the pulse width
∆T . This is an important characteristics of atmospheric radars. Especially, the power
aperture product PtAe is a common measure of the radars capability.

1.3 Phased antenna arrays
A phased antenna array is an array of spatially-distributed antennas with each element
driven to make the constructive interference at the specific direction. Phased antenna
arrays have great advantages over mechanically scanned antennas with a reflector; e.g.,
free of moving parts, rapid beam scanning, and controllable sidelobe characteristics us-
ing adaptive weighting of amplitude gains and phase shifts for each element. In this
section, the basic principles of phased antenna arrays are presented.

𝑽 𝜃, 𝜙

𝑂𝑳'

𝑳' ⋅ 𝑽 𝜃, 𝜙

Wavefront

Figure 1.4: An example of phased array system.
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1.3.1 Array manifold vector
Figure 1.4 is an schematic illustration of a phased array system. Li is the three-dimensional
location of i-th antenna, and V(θ ,ϕ) is the radial unit vector in the desired direction
(θ ,ϕ), where θ and ϕ are the zenith and azimuth angles for an arbitrary direction in
three-dimensional space. Here, the azimuth angle is measured clockwise from the north.
The wavefront in Fig. 1.4 is perpendicular to the looking direction (θ ,ϕ), and the electric
field at this direction is coherent. The phase shifts to create such wavefronts are calcu-
lated by the normalized array manifold vector A(θ ,ϕ). The i-th component of Ai(θ ,ϕ)
is written as:

Ai(θ ,ϕ) =
1√
M

exp
[
−j

2π
λ

Li ·V(θ ,ϕ)
]
, (1.19)

V(θ ,ϕ) = [sinθ sinϕ ,sinθ cosϕ ,cosθ ]T , (1.20)

where M is the number of antennas, j is the imaginary unit, and (·)T denotes the trans-
position of a matrix. Note that Eq. (1.19) is also called the steering vector.

1.3.2 Nonadaptive beamforming
The narrowband beamforming output of a phased antenna array is generally written as:

Y = WHX , (1.21)

where X = [X1,X2, · · · ,XM]T is a complex time series for M spatially distributed anten-
nas, W = [W1,W2, · · · ,WM]T is called a weight vector to change the amplitude and phase
of the output signal of each receiver or antenna, and Y is the synthesized output. The
notation (·)H represents the conjugate transposition of a matrix.

The weight vector to steer the main beam to the desired direction (θo,ϕo) can be
calculated using Eq. (1.19):

Wo = A(θo,ϕo) . (1.22)

As in Eq. (1.22), the weight vector in this case is determined only by the geometrical
positions of the receiver antennas, as well as the direction of the main beam. Thus, this
operation is called nonadaptive beamforming.

1.3.3 Array factor and radiation pattern
As mentioned above, the direction in which the radio wave propagates can be controlled
by the phase shift given by Eq. (1.19). However, undesired radiation also occurs at
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almost all other directions, although the phase relationships in these directions do not
make fully-constructive interference. Hence, the radiation pattern, or beam pattern, is an
important characteristic of a phased antenna array that indicates how well the radiated
power is concentrated to the desired direction.

To calculate the radiation pattern of a phased antenna array, the array factor F(θ ,ϕ)
is used, which is defined as follows:

F(θ ,ϕ) = WHA(θ ,ϕ) . (1.23)

Note that Eq. (1.23) assumes all antenna elements to have the same omnidirectional
antenna pattern. Otherwise, the generated electric field becomes a product of the element
pattern Ee(θ ,ϕ) and F(θ ,ϕ).

The far-field radiation pattern of a phased antenna array with the nonadaptive beam-
forming is calculated using Eqs. (1.22) and (1.23):

D(θ ,ϕ ;θo,ϕo) =
∣∣Ee(θ ,ϕ)WH

o A(θ ,ϕ)
∣∣2 . (1.24)

The weight vector Wo can be calculated using either Eq. (1.22) or other adaptive beam-
forming techniques, e.g., those presented in section 1.7.
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Figure 1.5: Example of array factor and radiation pattern.

Figure 1.5 shows an example of the broadside array factor and the radiation pattern of
a 20-element uniform linear antenna array with equal spacing of half wave length. Each
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antenna element is a half wavelength dipole antenna at the free space. This figure is a
section at ϕ = 0. The green line is the element pattern |Ee(θ)|2, the black line is the array
factor F(θ ;0◦), and the red line is the total radiation pattern D(θ ;45◦) with the steering
direction θo = 45◦. Note that element pattern and array factor are both normalized to
0 dB. As in Eq. (1.24), the total radiation pattern is the product of the element pattern
and the array factor. This is also shown in Fig. 1.5, i.e., the radiation pattern of the array
is weighted by the element pattern. This is called the law of pattern multiplication.

1.3.4 Calculation of element pattern
For more realistic cases presented in the next and following chapters, computation of
the directional gain of each antenna is required to evaluate the total radiation pattern of
an antenna array. Thus, the far-field element pattern of an antenna is calculated using
the Numerical Electromagnetic Code (NEC). Actual implementation used in this thesis
is NEC2++ (Molteno, 2014). Below is a brief explanation of NEC.

NEC solves the integral equations about the surface currents on wire or surface patch
models. The basic methodology for solving these problems is the method of moments
(MOM), which is classified into the finite element method (Harrington and Harrington,
1996). MOM first divides the surface of the original model into small-sized segments.
Typically, the length of each segment is chosen so as to be less than 0.1λ for enough
accuracy (e.g., Rubinstein et al., 2006). On each small segment, the distribution of the
surface current is approximated by a simple interpolating function, which is usually
a piecewise sinusoidal function. By using this approximation, the integration can be
calculated analytically, and the distribution of the surface currents is obtained. The far-
field radiation pattern can easily be calculated from them.

In actual, above calculations are done using matrix inversion, and the dimensions of
the matrix depend on the number of segments (Ferguson et al., 1976). Thus, MOM is
usually used for models with dimensions of up to several wavelengths.

1.4 Atmospheric radar observation
Atmospheric radar is an instrument to observe wind velocities in clear air. Earth’s atmo-
sphere are commonly classified into four regions; from the bottom to top, troposphere,
stratosphere, mesosphere, and thermosphere. The troposphere is the lowest region in
the atmosphere from the ground to about 12 km in altitude. The stratosphere is the next
region, up to 50 km. The mesosphere extends up to 90 km above the stratosphere. The
sensitive radars capable of observing the radar returns from these three regions are called
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mesosphere-stratosphere-troposphere (MST) radars. The primary echo sources in these
regions are the irregularities of refractive index caused by atmospheric turbulences. MST
radars observe the background winds using the motion of these turbulences as tracers.

The region above 80 km is called thermosphere. In this region, the air is so thin that
atmospheric turbulences cannot be observed. However, this region is ionized by the
solar radiation, and the electron density is higher than other regions. Thus, the backscat-
tered signal from these free electrons, called incoherent scattering (IS), can be observed
instead. Some powerful MST radars can observe this incoherent scattering, such as the
middle-and-upper atmosphere (MU) radar mentioned in section 2.2.

The scattering theory in clear air turbulence was first investigated by Booker and
Gordon (1950). Woodman and Guillen (1974) then confirmed the existence of atmo-
spheric backscattered echoes in the stratosphere and mesosphere using the VHF-band
pulse Doppler radar at the Jicamarca Radio Observatory. After that, the MST radar tech-
niques rapidly evolved in 1970–1980s (e.g., Balsley and Gage, 1982; Gage and Balsley,
1978; Larsen and Röttger, 1982). This section provides an overview for the sources of
the target signal, clutter, and noise for atmospheric radars.

1.4.1 Atmospheric echoes
The primary sources of atmospheric echoes in MST regions are the irregularities in re-
fractive index caused by turbulences (Woodman and Guillen, 1974). The backscattering
process is referred to as Bragg scattering. Below, a short explanation of Bragg scattering
theory is presented, based on Fukao et al. (2014).

When radio waves transmitted from a radar are incident on the turbulent medium, the
waves are scattered due to the irregularities of the refractive index. The refractive index
in a medium at location l is written as n(l). The autocorrelation function N(r) with the
displacement r is given by:

N(r) =
∫

n(l)n(l+ r)dl . (1.25)

The spatial distribution spectrum N̂(k) is given by the Fourier transform of Eq. (1.25):

N̂(k) = F [N(r)] =
1

(2π)3

∫∫∫
N(r)e−jkrdr , (1.26)

where k = ki − ks is the wave vector. ki and ks is the wave vectors of incident and
scattered waves, and |ki| = k = 2π/λ is the wavenumber of the radar system. The
average scattered power Pr is obtained using Eq. (1.26):

Pr =C
k4

r2 N̂(k) , (1.27)
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where C is a constant determined by the radar system, and r is the distance to the radar
volume. In backscattering case, the wave vectors of scattered and incident waves must
have the relationship ks = −ki. Hence, the wave vector k in Eq. (1.27) also has the
relationship k = 2ks. This condition implies that only the wave component with their
wave number

∣∣k̂∣∣ = 2k = 4π/λ contributes to the scattering power in Bragg scattering.
In common, MST radars use the frequencies in VHF band, because this corresponds to
the ordinary scale of turbulent irregularities, i.e., 1 m to 10 m.

1.4.2 Clutter contamination
In atmospheric radars, suppression of clutter is critical in obtaining accurate measure-
ments of wind velocities, especially for observing vertical air motion in the stratosphere
and troposphere. Radial wind velocities are usually determined by taking the first mo-
ment of the spectrum of backscattered echoes. However, the returned atmospheric spec-
trum is contaminated by various clutter. Thus, by simply taking the moment of the
observed spectrum, the estimated Doppler shift can contain severe biases. Below, the
characteristics of typical clutter types are considered including the ground, aircraft, me-
teor, and FAI clutters. Clutter suppression techniques against them are also briefly intro-
duced.

Ground clutter

In the lower region of atmosphere, the primary source of the clutter is the ground sur-
face. Aircrafts or birds can also become sources of the clutter (Chen et al., 2007). Fig-
ure 1.6 shows an example of the ground and aircraft clutter in ST region observed by
the MU radar. Because sources of the ground clutter are stationary objects, the clut-
ter spectrum exists in the zero Doppler component. In contrast, aircraft clutter usually
has a wide spectrum because of their rapid motion; the typical speed of aircrafts are
about 250 ms−1. As mentioned in section 1.2.4, the maximum observable velocity with-
out ambiguities depends on the slow time interval, which are usually chosen such that
the maximum velocity becomes about 30 ms−1. Thus, aircraft clutter contains severe
Doppler aliasing as shown in Fig. 1.6. However, since the aircraft dwells in a range bin
for a short time, rejection of aircraft clutter is not difficult, i.e., the affected data can
simply be discarded. In contrast, the ground clutter semipermanently exists in almost all
range bins, making its suppression the more critical for ground-based radars.

As mentioned above, the ground clutter exists mostly in the zero Doppler component
of the observed spectrum. Thus, the ground clutter contamination can be mitigated by
removing the zero Doppler component before taking the moments or performing the
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Figure 1.6: An example Doppler spectrum in ST region observed by the MU radar, con-
taining the ground and aircraft clutter.

spectral fitting. However, the fading caused by the fluctuation along the pass of propa-
gation, as well as the window function applied before the Fourier transform, can widen
the clutter spectrum. Hence, modified fitting algorithm considering these fading effects
also exists (Sato and Woodman, 1982). In weather radars, temporal high-pass filtering
using regression or elliptic filters are also widely in use for moving target indication
(MTI).

Meteor trails

In mesosphere and ionosphere, meteor echoes are the major clutter. Meteorites are solid
particles from the solar system which produce light when impinging on the Earth’s atmo-
sphere (Ceplecha et al., 1998). The meteor echoes are backscattered echoes originating
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from meteorites, and can be categorized into two types; the head echo and trail echo.
Meteor head echo is thought as the backscattering from the ionized plasma surround-

ing the meteorite, although its nature is not fully understood yet. They are sometimes
observed before the meteor trail, and their echo intensities are much weaker than the
meteor trail echoes (Pellinen-Wannberg and Wannberg, 1994). Its velocity is initially
the same as the meteorite (Hey et al., 1947; von Zahn and Hansen, 1988), e.g., between
11.2 kms−1 and 72.8 kms−1. Hence, their dwell time in a radar range is very short, e.g.,
around 100 ms (Kero et al., 2012). Thus, simple data filtering can also be used to remove
affected data by meteor head echoes like in the aircraft clutter.
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Figure 1.7: An example Doppler spectrum in mesosphere region observed by the MU
radar, containing the meteor trail echoes.
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Meteor trail echoes are returned from the ionized atmosphere along the pass of me-
teorites. Meteor trails can be considered as the linearly aligned ions and electrons, thus
strongly backscatter the radio waves in a perpendicular direction. Figure 1.7 shows an
example of the meteor trail echoes observed by the MU radar. Compared to the head
echoes, these meteor trails have slower motion caused by the background wind. In ad-
dition, the duration of meteor trail echoes are much longer than that of the head echoes,
reaching about a seconds (Ceplecha et al., 1998). Thus, the rejection of meteor trail
clutter is an important subject for accurate measurement of wind velocity in middle at-
mosphere and IS observations in ionosphere. Again, simple data filtering can be used to
remove data affected by meteor echoes, as in the aircraft clutter rejection in ST regions
(Sato et al., 1989; Tsuda et al., 1985).

It should be noted that meteor echoes are also of important scientific interests. The
velocity and direction of meteors can be estimated by observing the meteor head echoes
using the pulse-to-pulse correlation (Kero et al., 2012), and background wind veloci-
ties can be estimated by using the meteor trails as tracers. Decay time of the intensity
of meteor echoes can also be used to estimate the atmospheric temperature (Tsutsumi
et al., 1994). Hence, the separation of the desired and other echoes, rather than simple
suppression of undesired signals, is the more preferable solution in these cases. This is
one of the motivations of using the adaptive beamforming techniques in the mesosphere
observation (Hashimoto et al., 2014).

Field aligned irregularities

Another possible application of adaptive beamforming is the incoherent scattering ob-
servation at the Syowa Station, Antarctic. Syowa Station has a large atmospheric radar
called Program of Antarctic Syowa MST/IS (PANSY) radar (Sato et al., 2014). Detailed
specifications of the PANSY radar is later mentioned in section 4.3. Besides the MST
radar capability, the PANSY radar can observe the IS echoes in ionosphere region from
about 100 km to 500 km. Strong coherent echoes from the field aligned irregularities
(FAIs) are also observed in the same ranges at the Syowa station (Koustov et al., 2001;
Ogawa, 1997). Figure 1.8 shows an illustration of the IS observation and the FAI echo
contamination in the PANSY radar. The FAI echoes are observed at a direction where
the line-of-sight is perpendicular to the geomagnetic field of the Earth, where auroral
electrons are aligned by the Lorentz force. The elevation angles for these directions are
about 20◦ for the PANSY radar. In the VHF band, the E-region FAIs satisfy the perpen-
dicularity at the height of about 90 – 130 km. The distances to these points then become
about 250 – 600 km, making the observation ranges of IS and FAI echoes overlapped.

Figure 1.9 shows the observed data from the PANSY radar in these hight region. The
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Figure 1.8: Illustration of the IS observation and the FAI echo contamination in the
PANSY radar.

horizontal axis is the time, vertical axis is the range, and color indicates the echo inten-
sity. Upper panel shows the incoherent scattering observed by the PANSY radar on May
15 2015 (around 300 km). It should be noted that this is the first IS observation of the
PANSY radar, and in the Antarctic region. As in this panel, the coherent echoes from
FAIs are not observed on this day. The lower panel shows the coherent FAI echoes in
the same ranges observed on August 27 2015. The observation parameters are exactly
the same. As in this panel, the intensity of the FAI echoes are much stronger than the IS
signals to completely obscure them. The quasi-periodic structure of the E-region FAIs
reported by Yamamoto et al. (1991) is also clearly seen in this figure.

Because both the IS and FAI echoes are of great interest for the polar atmospheric re-
search, the separation of these echoes are necessary. For this purpose, the PANSY radar
has a supplemental antenna array with 24 Yagi antennas directed at the geomagnetic
south pole with the elevation angle of 30◦, called the FAI array, as shown in Fig. 1.8.
The detailed antenna arrangement and the pattern characteristics of the PANSY radar is
presented in Figs. 4.4 and 4.5. Currently, the adaptive beamforming algorithm that uses
the main and FAI array simultaneously is being studied. The partial adaptive array using
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the gain-weighted constraints, which is presented in Chapter 3, is expected to become
the breakthrough in this case.
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Figure 1.9: Range-time-intensity plot for the incoherent scattering (upper) and FAI
echoes (lower) observed by the PANSY radar.

1.4.3 Galactic Noise
As mentioned in sections 1.4.1 and 1.4.2, atmospheric echoes are very weak and can
be contaminated by various clutter. Another inevitable disturbance in the MST radar
observation is the galactic noise, which is originating outside of the Earth’s atmosphere.
Its characteristics are similar to those of the thermal noise. However, they have much
larger intensity at the VHF band, e.g., the noise temperature is usually more than 5000 K.
The principal mechanism of the galactic noise is called synchrotron radiation, which is
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caused by the relativistic electrons accelerated by the Lorentz force with strong magnetic
field in interstellar medium. The frequency distribution of the synchrotron radiation is
very wide, which is derived from the energy distribution of the electrons. However, due
to the existence of ionized electrons in Earth’s ionosphere, lower frequency components
below about 10 MHz are reflected. Likewise, atmospheric attenuation becomes signif-
icant in higher frequencies above 1 GHz. Thus, the intensity of the galactic noise is
frequency-dependent, and the VHF band, which is the common selection for the MST
radars, is the most sensitive frequency band to it. The intensity of the galactic noise
also has dependences on time due to the Earth’s rotation and revolution and the radar
beam direction, because particular regions in the sky have the more celestial objects that
strongly emit radio waves, e.g., pulsars and quasars, compared with the other regions.

Figure 1.10: All-sky map of the galactic noise at 12:00 UTC (15:00 LT), March 31 2015.
Modified after Guzmán et al. (2011).

The all-sky galactic radiation map in 45 MHz studied by Guzmán et al. (2011) clearly
shows these variations. This map is created using two individual surveys; northern sky
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map by Maeda et al. (1999), and southern sky map by Alvarez et al. (1997). These two
surveys use instruments with similar characteristics; Maeda et al. (1999) uses the MU
radar and Alvarez et al. (1997) uses the array at Maipú Radio Astronomy Observatory
(May et al., 1984).
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Figure 1.11: (a) Noise temperature extracted from Fig. 1.10, and (b) observed noise floor
level for zenith, north, and south beams of the PANSY radar.

Figure 1.10 shows an example of the all-sky map of the galactic noise above the
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PANSY radar at 69.00◦S, 39.58◦E, on 12:00 UTC (15:00 LT), March 31 2015. As
mentioned above, the galactic noise shows the temporal variation, thus requiring the
specific date and time as well as the location of which the observation is made. The
horizontal axis is the hour angle, which is defined as the difference between the local
time and right ascension. Negative and positive values represent the time before and
after passing above the radar, respectively. The vertical axis is the declination angle, and
colors represent the noise temperature. White area is above 13000 K, and black area is
not covered in this map. A solid line parallel to the horizontal axis indicates the lati-
tude of the PANSY radar, or equivalently, the pointing angle of the zenith beam. Upper
and lower dashed lines around it are two off-vertical beam directions, north (+10◦) and
south (−10◦), respectively. Figure 1.11a shows the noise temperatures extracted along
with these three lines. The horizontal axis is the Greenwich sidereal time, which has an
offset of about +34 min from UTC in this case. The vertical axis is the galactic noise
temperature. Figure 1.11b shows the actual noise power observed by the PANSY radar
for these beams. Each point is obtained by the average of about 92 s, and smoothed by
the 5-point median filter to remove outliers. By comparing Figs. 1.11a and 1.11b, the
observed noise power is consistent with the all-sky map by Guzmán et al. (2011). The
small peak in the zenith beam at about 15:00 in these figures is from the supernova SN
1987A (Arnett et al., 1989).

Monitoring of the noise power is an important operation not only for the threshold
to pick the weak atmospheric signals up from the noise floor, but also for the better
understanding of the polar atmosphere and the health check of the radar system. For
example, if the observed diurnal variation of the galactic noise power was strange, it
may imply the existence of some solar events, exterior interference, or other system
failure. The detailed estimation procedure of the noise power is given in section 1.5.4.

1.5 Wind velocity measurement using
atmospheric Doppler radars

The basic concept of the pulse Doppler radar is already mentioned in section 1.2. Here,
actual procedure of data acquisition and signal processing on atmospheric radars are
explained using Fig. 1.12.

1.5.1 Data acquisition and signal processing overview
As mentioned in section 1.2, pulse Doppler radar periodically transmits the radio waves.
The time interval between each consecutive pulse pair is called pulse repetition interval
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Figure 1.12: Schematic flow of data acquisition and signal processing of atmospheric
radars to obtain the radial Doppler velocity.
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(PRI) or inter pulse period (IPP), which is written as Tp. The transmitted radio wave
travels by the speed of light, and backscattered in each range. After a pulse has been
transmitted, receivers start sampling to observe backscattered echoes in each range, ob-
taining a range sequence r(τ). The sampling interval is equal to the pulse width ∆T ,
which determines the range resolution ∆r, as in Eq. (1.3). The maximum number of
samples in r(τ) is limited by IPP, because the acquisition of a range sequence r(τ) must
be finished before the next pulse is transmitted. Hence, ∆r, Tp, and Nh must be chosen
to satisfy the following relationship:

rmax = Nh∆r ≤ c
2

Tp , (1.28)

where rmax is the maximum observable distance.
As mentioned in section 1.2.4, the observed Doppler velocity shift using a pulse

Doppler radar only contains the information about the radial component of the back-
ground wind along with the radar beam. Hence, to reconstruct the three-dimensional
wind field, multiple-beam observation is generally used. In this case, the beam direc-
tion is changed in every IPP to ensure that the wind field is not changing among the
beams. The range sequence r(τ) in the same beam direction is thus taken by the in-
terval of ∆t = TpNb when the number of beams is Nb. Note that this is also effective
on mitigating the range aliasing, because Tx and Rx beam patterns become different in
succeeding pulses. A range-time matrix s(t,τ) is then obtained by arranging Nt set of
r(τ) in the same beam direction, as in Fig. 1.12. s(t,τ) has the size of Nt time points
and Nh range points. τ and t both have the dimensions of time, called fast time and slow
time, respectively.

Modern atmospheric radars commonly have multiple receiver channels for the purpose
of the adaptive beamforming. Because the beamforming is usually done in a range-by-
range manner, time series extracted from a specific range, x(t), is collected for each
receiver channel to make the input signal matrix X(t), as in Fig. 1.12. The weight vector
W(t) is then applied to X(t) using Eq. (1.21) to obtain the synthesized output Y (t).
Detailed adaptive beamforming methods are explained in section 1.7 and later chapters.

Finally, the power spectrum S(ω) is estimated from Y (t), and the spectral peak of the
atmospheric echo is searched in the averaged spectrum to measure the radial Doppler
velocity vd . Detailed procedure of spectral processing is explained in the next section.

1.5.2 Power spectrum and periodogram
To obtain the mean Doppler frequency shift from the combined time series Y (t), the
Fourier transform of the received time-domain signal is generally used to obtain the
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atmospheric power spectrum S(ω) (e.g., Richards et al., 2010):

S(ω) = |F [Y (t)]|2 =
∣∣∣∣∫ ∞

−∞
Y (t)e−jωtdt

∣∣∣∣2 , (1.29)

where ω = 2π f is the Doppler angular frequency.
In reality, a finite time series is used in Eq. (1.29) to estimate the spectrum S(ω).

The square of the Fourier transform using finite time series is called a periodogram.
A periodogram generally has a large statistical fluctuation attributed to the noise. To
decrease this fluctuation, the incoherent integration is commonly performed using Ni
successive periodograms:

S̄(ω) =
1
Ni

Ni

∑
i=1

Si(ω) . (1.30)

Here, the amount of the fluctuation decreased by this incoherent integration is con-
sidered. The noise in both I and Q components can be assumed to follow the standard
normal distribution. A periodogram is the sum of squares of both I and Q components,
thus making it to follow the χ2 distribution with two degrees of freedom. For the χ2 dis-
tribution with k degrees of freedom, or written as χ2

k hereafter, the mean µk and standard
deviation σk are (e.g. Kay, 1998):

µk = k, σk =
√

2k . (1.31)

Thus, both mean and standard deviation are 2 for k = 2. If Ni successive periodograms
are added, the resultant periodogram follows χ2

2Ni
. The mean and standard deviation in

this case become µ2Ni = 2 and σ2Ni = 2/
√

Ni using Eq. (1.31) with the normalization
by Ni. Compared with the standard deviation before the incoherent integration (σ2 = 2),
the standard deviation of the noise is multiplied by 1/

√
Ni. That is, Ni-time incoherent

integration reduces the noise fluctuation by 1/
√

Ni (Fukao et al., 1985a). On the other
hand, the mean is unchanged after incoherent integration for the noise, while it is also the
case for the peak of the desired signal. Therefore, the spectral peak height of the desired
signal from the noise floor level is not changed by the incoherent integration. Instead,
decreasing the fluctuation of noise enables the detection of small peaks which were
obscured by noise before the incoherent integration. Sections 1.5.3 and 1.5.4 further
discuss the detection of weak atmospheric signal from the Doppler spectrum.

1.5.3 Detectability
To find the weak signal which has the power close to noise, a threshold is needed to
distinguish the desired signal and noise. In atmospheric radars, the detectability thresh-
olding is generally used (Fukao et al., 2014; Gage and Balsley, 1978) to find the spectral
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peak in the Doppler spectrum. The detectability is defined as the ratio between the peak
height of the atmospheric spectrum and the standard deviation of the noise, or equiva-
lently, the mean noise power PN . The detectability threshold TD after Ni-time incoherent
integration is given by:

TD = PN
(
1+Dt/

√
Ni
)
, (1.32)

where Dt is the detectability level. Using Dt = 3 in Eq. (1.32) will assume those peaks
in the periodogram with three times or more larger power spectral density than PN to be
valid echoes.

1.5.4 Noise floor level estimation
In detectability thresholding, the mean noise power PN is required. It is also an impor-
tant value in spectral fitting, because it can cause a bias without subtracting it from the
observed power spectrum (Woodman, 1985). As in Eq. (1.31), the standard deviation
and mean of random numbers following the χ2 distribution can be converted to each
other using the degrees of freedom. Therefore, the mean noise power spectral density
PN is first calculated from the observed periodogram. There are several approaches to
do this.

Iterative algorithm

Algorithm proposed by Hildebrand and Sekhon (1974) iteratively decreases a threshold,
and removes points in a periodogram which are larger than this threshold. At each iter-
ation, the mean and variance are calculated using the remaining points of periodogram
ωr, and are tested whether they satisfies the following equation:

R =
⟨S̄(ωr)⟩2

Ni
[
⟨S̄2(ωr)⟩−⟨S̄(ωr)⟩2

] = 1 , (1.33)

because the ratio R between squared mean and variance of the noise spectrum after Ni-
time incoherent integration theoretically equals to 1, as mentioned in section 1.5.2; see
Eq. (1.31). Here, ⟨(·)⟩ denotes the ensemble average. The estimation of the noise power
PN can be obtained by ⟨S̄(ωr)⟩ using remaining periodogram points ωr.

This technique requires relatively a larger computational cost than the segment method
below attributed to its iterative procedure. However, the obtained noise power is usually
better estimation of the true value (Petitdidier et al., 1997). Thus, this technique is
widely used in MST radars. Similar technique has been proposed by Urkowitz and
Nespor (1992) which focuses on the flatness of the noise spectrum.
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Segment method

Another approach is called segment method proposed by Sato et al. (1989). First, the
spectrum with Ni-time incoherent integration, S̄(kh,kf), is divided into equal-sized Nd
segments including Ns = Nf/Nd points each, and the average power spectral densities of
these segments are calculated, followed by selecting the lowest average power Ŝm out of
these segment-wise averages:

Ŝm = min
kh,kd

1
Ns

Ns

∑
ks=1

S̄(kh,ks +Ns(kd −1) , (1.34)

for kf = 1, . . . , Nf, kd = 1, . . . , Nd, and kh = 1, . . . , Nh. By the procedure so far, the
resultant minimum average Ŝm is always an underestimation of the true noise level PN .
However, this can be corrected considering the probability of a random choice from a
set being the minimum value (Tsuda, 1989). Suppose a population with its parameter
p has the probability distribution function (PDF) Φ(x) for random variables x. The
probability of a sample x being the minimum value, Ψ(x), can be written using the
right-tail probability Q(x) of the PDF Φ(x):

Q(x) =
∫ ∞

x
Φ(y)dy , (1.35)

Ψ(x) = p [Q(x)]p−1 Φ(x) . (1.36)

Here, factor p appears in Eq. (1.36), because there are p possible permutations. Q(x)
in Eq. (1.35) can be interpreted as the probability of exceeding a given value x. The
expectation value of Eq. (1.36), e, can be computed from the first moment of Ψ(x):

e =
∫ ∞

−∞
xΨ(x)dx =

∫ ∞

−∞
px [Q(x)]p−1 Φ(x)dx . (1.37)

In the current case, the PDF Φ(x) follows the χ2 distribution with 2ν degrees of
freedom, where ν = NiNs. The PDF Φ(x) and its right-tail probability Q(x) is then
written as (e.g., Kay, 1998):

Φ(x) =
1

2νΓ(ν)
xν−1 exp

(
−1

2
x
)
, (1.38)

Q(x) = exp
(
−1

2
x
)ν−1

∑
k=0

( x
2

)k

k!
, (1.39)
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for x > 0. Function Γ(x) is the Gamma function, which is defined as:

Γ(x) =
∫ ∞

0
zx−1 exp(−z)dz . (1.40)

Substituting Eqs. (1.38) and (1.39) into Eq. (1.37) yields the theoretical expectation
value of the minimum for χ2

2ν , or e2ν . On the other hand, the theoretical mean for χ2
2ν

is µ2ν = 2ν , as in Eq. (1.31). Therefore, using e2ν and µ2ν as the correction factors, the
true noise level PN can be calculated from the minimum value of the block-wise average
Ŝm:

PN =
µ2ν
e2ν

Ŝm =
2ν
e2ν

Ŝm . (1.41)

The clear advantage of this segment method is the smaller calculation cost compared
with the iterative algorithm by Hildebrand and Sekhon (1974). As in Eq. (1.34), the
calculation of Ŝm requires only fixed number of steps. In addition, the correction factor
e2ν only depends on the observational settings; the number of incoherent integration and
points in each segment, Ni and Ns, respectively. Therefore, e2ν is calculated only once at
the beginning of the observation, enabling the estimation of PN by the simple block-wise
average and a single multiplication in Eq. (1.41).

To further decrease the calculation complexity, Sato et al. (1989) used an additional
approximation on Φ(x), i.e., for sufficiently large ν , Φ(x) can be approximated to the
Gaussian distribution with its mean and standard deviation properly normalized. With
this approximation, the noise power can be estimated using the expected minimum value
e′ of this Gaussian approximated PDF instead of e2ν . Figure 1.13 shows an example of
the Gaussian approximation of the χ2 distribution. The black solid line is the PDF
of the χ2

224, and the red solid line is the Gaussian-approximated PDF N (224,
√

448),
which is the normal distribution with its mean 224 and standard deviation

√
448. Note

that this setting frequently appears in the standard observations of the MU radar. The
black and red dashed lines are χ2

32 and N (32,
√

64), respectively. This corresponds to
the case when the number of incoherent integration is 1/7 times of χ2

224, and a larger
approximation error can be seen compared to χ2

224. As shown by this figure, the χ2
2ν can

be approximated by N (2ν ,2
√

ν) when ν is sufficiently large.
To compute e′, the standard normal distribution N (0,1) is first considered. In this

case, the right-tail probability function Q(x) can be simplified to (e.g., Kay, 1998):

Q(x) =
1
2

[
1− erf

(
x√
2

)]
. (1.42)
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Figure 1.13: An example of the Gaussian approximation for χ2 distribution.

Here, function erf(x) is the error function, which is defined as:

erf(x) =
2√
π

∫ x

0
exp

(
−y2)dy . (1.43)

Clearly, the probability of a random value e0,1 ∼ N (0,1) being the maximum of the
population with parameter p satisfies the following equation:

Q(e0,1) =
1
2

[
1− erf

(
e0,1√

2

)]
=

1
p
. (1.44)

By solving Eq. (1.44), the expected maximum value e0,1 is obtained. The expected
minimum value of N (0,1) is then −e0,1, because N (0,1) is a symmetric PDF. e′ is
then computed as:

e′ =−2
√

νe0,1 +2ν . (1.45)

Substituting e′ in Eq. (1.41) instead of e2ν yields:

PN =
1

1− e0,1/
√

ν
Ŝm . (1.46)

This is the noise level estimation of the Gaussian-approximated segment method.
As Petitdidier et al. (1997) pointed, however, the Gaussian approximation can be vio-

lated for small ν , causing larger biases compared with the iterative algorithm by Hilde-
brand and Sekhon (1974). To see the accuracy of this approximation, a comparison was
made on two implementations of the segment method; strict estimation using Eqs. (1.37)
to (1.39), “Strict”, and Gaussian approximation in Sato et al. (1989), “Gaussian”. Ta-
ble 1.1 shows the three situations used in this simulation. Case A is based on the standard
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observation in ST region of the MU radar. Case B and C have a different number of range
points Nh = 1, or incoherent integration Ni = 1, respectively, compared with the case A.
In this comparison, 100 Monte Carlo simulations are carried out. For each evaluation,
a simulated noise spectrum is first generated using random variables following the χ2

distribution according to the parameters in Table 1.1. Strict and Gaussian-approximated
segment methods are then applied to the generated noise spectrum to estimate the noise
power.

Table 1.1: Three test cases used in the simulation. These are based on the standard
observation of the MU radar.

Case Nf Nh Ni Nd Ns 2NiNs NdNh
A 128 100 7 8 16 224 800
B 128 1 7 8 16 224 8
C 128 100 1 8 16 32 800

Table 1.2: Comparison of the strict and Gaussian-approximated segment methods. a±b
denotes mean a and standard deviation b. Cases are defined in Table 1.1.

Case Truth Strict Gaussian
A 14 13.9±0.6 14.6±0.6
B 14 14.0±0.8 14.5±0.8
C 2 1.96±0.2 3.68±0.5

Table 1.2 summarizes the results. In cases A and B, the degrees of freedom of the
underlying χ2 distribution in averaged segments are 224. As in Table 1.2, the Gaussian
approximation by Sato et al. (1989) is enough accurate in these cases, although the
strict one gives slightly better estimations. Hence, the variation in population parameter,
NhNd, seems not dominant between these two cases. This implies that after enough
number of incoherent integration, the Gaussian approximation can safely be applied
even in range-by-range manner, which is a consistent result with that in Petitdidier et al.
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(1997). However, results in Table 1.2 are based on the spectrum only containing the
noise, and not every range gate can be assumed to have an enough number of “clean”
segments, i.e., without atmospheric, clutter, or other interference spectrum. Therefore,
range-wise estimation as in case B should be avoided in actual observed spectrum. In
case C, the estimated noise power is severely biased using the Gaussian-approximated
segment method, while correct using the strict one. This is naturally understood with
the approximation error of χ2

32 shown in Fig. 1.13.
From these results, it can be concluded that the strict segment method can be applied

in the wider range of the situations than that using Gaussian approximation. Since the
calculation cost of e2ν using Eqs. (1.37) to (1.39) should never be a problem on modern
computers, the strict segment method is used in this thesis.

1.5.5 Estimation of radial Doppler velocity
The mean Doppler angular frequency shift vd can be obtained, for example, by taking the
first moment of the spectrum of backscattered echoes (Woodman, 1985; Zrnic, 1979):

Pr =

∫ ∞

−∞
S̄(v)dv , (1.47)

vd =
1
Pr

∫ ∞

−∞
vS̄(v)dv , (1.48)

where v =−4πω/λ is the Doppler velocity (see Eq. (1.8)) and Pr is the zero-th moment
of the power spectrum, i.e., the received echo power. Note that the noise power PN is
estimated employing the segment method in section 1.5.4 and subtracted from S̄(v) in
advance.

Another technique for estimating the mean Doppler velocity is the spectral fitting.
In this thesis, the least-squares fitting method is used (Sato and Woodman, 1982; Ya-
mamoto et al., 1988). This method fits a Gaussian spectrum model to the observed
spectrum S̄(v). The model spectrum S′(v;Ps,vd,σd) is written as:

S′(v;Ps,vd,σd) =
Ps√

2πσd
exp

[
−(v− vd)

2

2σ2
d

]
, (1.49)

where v is the radial wind velocity, Ps is the echo intensity of the atmospheric echo, PN is
the noise floor level, vd is the mean Doppler velocity of the wind, and σd is the spectral
width. The fitting procedure is done by finding a set of Ps, vd , and σd such that the
root-mean-square (RMS) of the residue between S′(v;Ps,vd,σd) and S(v) is minimized:

Ps,vd,σd = argmin
Ps,vd ,σd

√
∑
v

[
Ŝ(v)−S′(v;Ps,vd,σd)−PN

]2
. (1.50)
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1.5.6 3-D wind field measurement
To evaluate the horizontal wind velocity, the Doppler beam swing (DBS) method can be
used. The technique is also called velocity azimuth display (VAD) method in weather
radars using rotating dish antennas (Browning and Wexler, 1968). Figure 1.14 illustrates
the schematic example of the DBS method applied on a phased array. As shown in
Fig. 1.14, five beam directions are usually used when applied to the phased arrays: zenith
(Z), north (N), east (E), west (W), and south (S). The DBS method collects the radial
Doppler velocities over all the steered beams to reconstruct the 3-D wind field in the
scanned volume. Note that the vertical wind velocity obtained by the zenith beam is
also used in the horizontal wind velocity estimation to remove the contamination of the
vertical wind component into the horizontal winds (Strauch et al., 1987). To apply the
DBS method, the radar beam width must be sufficiently narrow, and the beam scanning
for multiple beams must be finished in a sufficiently short time; otherwise, the observed
Doppler velocity will become the sum of the various wind components in the radar
volume illuminated by the wide beam, and the wind field may be changed while scanning
the beam, resulting in an inaccurate estimation of wind field (Fukao et al., 2014).

E 

N 

S 

W 

Figure 1.14: Illustration of the Doppler beam swing method for phased arrays.
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1.6 Conventional clutter suppression techniques
for atmospheric radars

In this section, various conventional clutter suppression techniques are reviewed, in-
cluding MTI processing, Doppler spectral filtering, and nonlinear fitting using models
of atmospheric and clutter spectra.

1.6.1 Moving target indication
Moving target indication (MTI) is a radar operation to detect a moving target under
stationary clutter interference. MTI processing generally applies a time-domain high-
pass filter to the observed signal. The filtered data are then passed to the amplitude
thresholding process to detect the existence of the target. Hence, neither discrimination
of multiple targets nor estimation of the target’s velocity can be done through the pure
MTI processing (Richards et al., 2010). Similar ground clutter suppression techniques
using time-domain high-pass filter is widely used in weather radars. In this case, the
MTI filter is first applied to suppress the ground clutter. Afterwards, the received signal
is converted to the spectrum to estimate the wind parameters.

MTI filter is usually a simple finite or infinite impulse response (FIR or IIR) filter. For
example, the operational meteorological radar in the United States, WSR-88D, uses a
fifth-order elliptic IIR filter for the ground clutter suppression (Crum et al., 1993; Heiss
et al., 1990). The regression filter is also used to improve the frequency response (Torres
and Zrnic, 1999).

As mentioned above, the MTI filter cuts the frequencies near the zero Doppler com-
ponent. However, this may also lose the desired weather echoes that have the radial
velocities close to zero. Hence, a decision of applying the clutter filter is first made
using the echo characteristics in the modern weather radar (Hubbert et al., 2009). This
procedure is called clutter mitigation decision (CMD) algorithm. The CMD algorithm
checks the fluctuation and discontinuity of the echo intensity between adjacent range
gates and beams. The fluctuation of the phase is also used, since the ground clutter has
relatively slow phase rotation. The MTI clutter filter is then applied only to ranges and
beams those determined by the CMD algorithm.

1.6.2 Pulse Doppler processing
In atmospheric radars and wind profilers using pulse Doppler radar system, the ground
clutter suppression is usually done in the frequency domain. The simplest way is to
replace the zero Doppler component of the observed spectrum by the average of those in
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both adjacent bins range by range (May and Strauch, 1998). This procedure is used in,
for example, the operational wind profiler network in japan, called wind profiler network
and data acquisition system (WINDAS) (Ishihara et al., 2006). Similar technique is
also routinely used as a part of spectral fitting algorithm in the MU radar (Fukao et al.,
1985a,b), and the PANSY radar (Sato et al., 2014). In this case, the radial wind velocity
is estimated by the least-squares fitting method without the zero Doppler component
when computing the residual errors (Yamamoto et al., 1988).

The problem of this methods is that they cannot distinguish the clutter and the actual
atmospheric spectrum that happens to be close to zero Doppler component. This can
cause biases especially in estimating zonal wind velocities. Typically, vertical wind
velocity is very small, e.g., mostly about 0.4 ms−1 in the PANSY radar (Sato et al., 2014)
in the ST region. Since the resolution of the Doppler velocity is comparable to this value,
the peak of the atmospheric spectrum mostly exists at the zero Doppler component.
Hence, such a simple filtering can cause biases to the peak position depending on the
values of adjacent bins in the spectrum. This is the motivation of the use of adaptive
beamforming techniques on clutter suppression.

1.7 Clutter suppression techniques using adaptive
beamforming

Recently, phased array has been widely used for the antenna structures of atmospheric
radars. Phased antenna arrays have a number of advantages compared with antennas
having mechanical scanning, e.g., rapid beam steering, as mentioned in section 1.3. In
particular, by dividing the array into multiple subgroups, one can use adaptive beam-
forming techniques to mitigate clutter contamination. As mentioned in the previous
section, temporal or spectral filtering can cause biases, especially in vertical wind mea-
surements, because they cannot distinguish the atmospheric spectrum and clutter spec-
trum in zero Doppler components. In contrast, adaptive beamforming techniques use
the spatial distribution of targets. The desired signal of atmospheric backscattering is
considered to come only from the beam pointing direction, i.e., near the zenith. On the
other hand, clutter signals are usually at low elevation angles. Adaptive beamforming
can distinguish signals from these different directions, and improve the accuracy of ver-
tical wind velocity measurements (Kamio and Sato, 2004; Nishimura et al., 2012). In
this section, basic methodologies of the adaptive beamforming are introduced.
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1.7.1 Directionally constrained minimization of power
The DCMP algorithm is an adaptive beamforming method that minimizes the average
output power under the constraint of the desired direction (Capon, 1969; Takao et al.,
1976). The DCMP algorithm can be written as a convex optimization problem:

minimize
W

WHRW subject to CHW = 1 , (1.51)

where R = E
[
XXH

]
is the covariance matrix and C is the directional constraint. C is

usually calculated using Eq. (1.19) with the desired direction (θo,ϕo), i.e., C=A(θo,ϕo),
assuming a uniform power directional gain for each channel. The solution to Eq. (1.51)
is given in the following section.

The DCMP algorithm is quite often used for adaptive clutter rejection because of its
simplicity and effectiveness. However, the major problem of this method is that the ob-
tained beam pattern can have large sidelobes, and their levels are uncontrollable. The
reception beam direction may also be largely changed to suppress clutter, leading to a
severe degradation in the signal-to-noise ratio (SNR), as well as the error in estimating
the wind velocity using the DBS method. This is because the beam pattern can be mod-
ified without changing the response to the desired direction as illustrated in Fig. 1.15.
The beam direction is largely changed although the response to the desired direction is
kept at a constant, causing a large beam directional error without the loss of the desired
signal power, especially when the desired signal source is a point-like target. These
problematic points of the DCMP algorithm are further discussed in section 4.2.

1.7.2 Norm-constrained DCMP algorithm
As mentioned in section 1.7.1, the DCMP algorithm causes severe SNR degradations in
various situations, e.g., using poorly estimated covariance matrices, using wrong steer-
ing vectors, or when applied to high SNR signals. Thus, to control the amount of SNR
degradation, the norm-constrained DCMP (NC-DCMP) algorithm has been introduced
(Cox et al., 1987; Hudson, 1981). The NC-DCMP algorithm is a modified DCMP that
adds to Eq. (1.51) the constraint:

∥W∥2 ≤U , (1.52)

where ∥(·)∥ denotes the Euclidean norm and U is the norm constraint. This method
is known to be effective in actual observations from the MU radar at Shigaraki, Japan
(Hashimoto et al., 2016, 2014; Kamio and Sato, 2004; Nishimura et al., 2012). More re-
cently, Curtis et al. (2016) applied the same algorithm to observations from the National
Weather Radar Testbed Phased Array Radar.
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Figure 1.15: Beam directional error in the DCMP algorithm.

Although it is generally difficult to determine U , Kamio et al. (2004) showed that U
can be computed from the permissible SNR degradation caused by signal processing.
Ideally, the desired signal is assumed to be unchanged by the DCMP algorithm. How-
ever, the average noise power is multiplied by ∥W∥2, because the primary noise source
in VHF band is galactic noise, which is random and independent of the antenna gain.
Therefore, the SNR degradation factor LSNR given by the standard DCMP algorithm is
written as:

LSNR =
1

∥W∥2 . (1.53)

Thus, to limit the SNR degradation to within LdB dB, U can be set to U = 10−LdB/10. LdB
is usually set to a small value, such as LdB = 0.5dB (corresponding to U ∼ 1.12), which
allows the algorithm to suppress the clutter at the cost of a SNR degradation of less than
0.5 dB.

The optimal weight vector for the NC-DCMP algorithm can be obtained using the
Lagrange multiplier and diagonal-loading technique:

W(α) =
(R+αI)−1C

CH(R+αI)−1C
, (1.54)

where α is the diagonal-loading value and I is the identity matrix. Note that α = 0 gives
the solution to the DCMP algorithm in Eq. (1.51). As ∥W∥2 decreases monotonically
as α increases, the optimal α for the NC-DCMP algorithm is calculated as follows
(Nishimura et al., 2012):
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1. Set α to a small value.

2. Calculate W using Eq. (1.54). If f (α) = ∥W∥2−U ≤ 0 is satisfied, then this is the
solution.

3. Otherwise, increase α and go to step 2.

Note that the analytical gradient of f (α) can be calculated as:

∂ f (α)

∂α
=

∂WH

∂α
W+WH ∂W

∂α
, (1.55)

∂W
∂α

=
(
WCH − I

)
(R+αI)−1W . (1.56)

The problem with the NC-DCMP algorithm is that the selection of the user-defined
parameter LdB is empirical. For example, Nishimura et al. (2012) used U = 1.2, 1.5, and
2.0, which correspond to the permissible SNR degradations having LdB = 0.79, 1.76,
and 3 dB. As they pointed out, this parameter depends on the electromagnetic environ-
ment around the radar system, i.e., the background noise level, clutter characteristics,
and power directionality of the antennas. In addition, these conditions also vary for each
range, making selection of the norm constraint difficult. Therefore, adaptive determina-
tion of the diagonal loading value using the observed data has been desired. This is the
motivation of the work presented in Chapter 4.

1.8 Organization of this thesis
So far, the fundamentals of pulse Doppler radar, phased antenna array, and the basics of
the signal processing techniques for atmospheric radars are reviewed, followed by the
explanation of clutter suppression techniques including adaptive beamforming.

The remaining part of this thesis is organized into four chapters. In Chapter 2, an
example of applying the adaptive beamforming techniques to the mesosphere wind ob-
servations of the MU radar is presented. In Chapter 3, the optimal array design for
atmospheric radars with adaptive beamforming is discussed. In Chapter 4, a novel adap-
tive ground clutter suppression algorithm for atmospheric radars is presented. Finally,
in Chapter 5, the results are summarized and concluding remarks are made.
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Chapter 2

Meteor clutter rejection and
accurate measurement of the
wind velocity in Mesosphere

2.1 Introduction
As mentioned in section 1.4.2, strong meteor echoes often contaminate spectra in obser-
vations of mesosphere wind employing Doppler radars. Meteor trail echoes are returned
from ionized electrons left along the paths of meteoroids. These trails usually remain at
most a second with 50 MHz and provide strong backscattering. For example, the echo
power from these trails may reach 80 dB over the noise level (McKinley, 1961). In radar
observations of the mesosphere, successive spectra are usually averaged to reduce statis-
tical fluctuations. Although these meteor trails fade out in less than a second, their strong
intensity contaminates the spectra severely even after the incoherent integration. Thus,
these spectra with meteor echoes are usually automatically detected by their disconti-
nuity in time and height and are discarded before the incoherent integration and wind
velocity estimation are made (Tsuda et al., 1985). However, only outstanding echoes can
be removed employing this method. Additionally, decreasing the number of spectra for
incoherent integration increases the fluctuations of spectra, which introduces estimation
errors of the wind velocity of weak mesosphere echoes.

In this chapter, the NC-DCMP algorithm is applied to the mesosphere wind observa-
tions to reduce interference from meteor trail echoes. As mentioned in section 1.7.2, the
NC-DCMP algorithm has been shown to be a good solution for the rejection of interfer-
ence from the ground and accurate estimation of the vertical wind velocity (Nishimura
et al., 2012). However, this is not the case for rapidly moving objects such as aircraft.
Meteor trail echoes are also moving objects and have strong echo intensity, but they are
relatively slow and the method works well for them.
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Figure 2.1: The antenna position and channel assignment of the MU radar. Modified
after Fukao et al. (1985a).
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Figure 2.2: The block diagram of of the MU radar (Hassenpflug et al., 2008).
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2.2 System model
In this chapter, the target radar system is the middle-and-upper atmosphere (MU) radar
(Fukao et al., 1985a,b), which is a large MST radar at Shigaraki, Japan (34.85◦N,
136.10◦E). The center frequency of the MU radar is 46.5 MHz in the VHF band. This
radar consists of a phased antenna array of 475 three-element crossed-Yagi antennas
arranged in a circle with its diameter of 103 m. Figure 2.1 is the antenna position and
channel assignment of the MU radar. Each 19 antennas indicated by polygonal frames
in Fig. 2.1 is a subarray channel. This radar first started its operation in 1984 with the
capability of dividing the entire array into 4 individual channels (Fukao et al., 1985a,b).
Later, in 2004, the MU radar was upgraded with the digital multichannel receiver sys-
tem that enables maximum of 25 channel adaptive array signal processing (Hassenpflug
et al., 2008). In the upgraded system, the signals received from each of the 19 antennas
are handled by an individual demodulator, as shown in Fig. 2.2.

2.3 Methods for generating simulated signals of
atmospheric radar observation

Throughout this thesis, numerical simulations of atmospheric radar observations are
used for the quantitative comparison of signal processing algorithms. For this purpose,
the complex time series at each receiver channel is needed for the atmospheric echoes,
clutter signal, and noise. Here, the methods for generating these simulated signals are
explained.

2.3.1 Some representative quantities in a Doppler spectrum
In simulations and observations, the clutter suppression capability of an arbitrary algo-
rithm should be numerically evaluated for the quantitative comparison. For this purpose,
some quantities in a spectrum are defined as in Fig. 2.3. These values are also used to
generate simulated signals. Here, the spectrum after sufficient number of incoherent in-
tegration is written as S̄(v), the atmospheric peak power PS, clutter peak power PI , and
the noise floor level PN .

SNDR The signal-to-noise density ratio, i.e., the peak height of the atmospheric spec-
trum above the noise floor level:

SNDR = PS/PN = S̄(vd)/PN . (2.1)

39



𝑣𝑑 

𝑣 

INDR 

SNDR 

SIDR 

𝑃𝑁 

𝑆 𝑣𝑑  

𝑆 0  
𝑆 𝑣  

Figure 2.3: Representative quantities in a Doppler spectrum.

INDR The interference-to-noise density ratio, i.e., the peak height of the clutter spec-
trum above the noise floor level. This is mainly used to specify the clutter power. For
the ground clutter, it is defined as:

INDR = PI/PN = S̄(0)/PN . (2.2)

SIDR The signal-to-interference density ratio, i.e., the peak height difference between
the atmospheric and clutter spectrum. For the ground clutter, it is defined as:

SIDR = PS/PI = S̄(vd)/S̄(0) . (2.3)

SINDR The signal-to-interference-plus-noise density ratio. This is defined as the same
manner with the signal-to-interference-plus-noise ratio (SINR) (e.g., Takao and Kikuma,
1986). For example, the SINDR related to the ground clutter is:

SINDR =
PS

PI +PN
=

S̄(vd)

S̄(0)+PN
. (2.4)
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2.3.2 Atmospheric signal generation
There are two major methods for simulating the time series of atmospheric signal. The
first one uses the inverse Fourier transform on the desired spectrum to obtain the complex
time series. The received signal at each receiver channel is then generated using the
array manifold vector. The second one is the more realistic simulation that sums up all
the backscattered signals from a large number of distributed scatterers in the target radar
volume. The turbulent motions of scatterers are also simulated in this model. Detailed
procedures of these methods are explained below.

Use of the inverse Fourier transform on the desired spectrum

This method was first introduced by Zrnic (1975) to generate the Doppler spectrum in
weather radars. As mentioned in section 1.5.5, the shape of atmospheric spectrum can be
approximated by a Gaussian function. Thus, the desired spectral shape S(ω;Ps,vd,σd) is
first designed using Eq. (1.49). Additionally, the time series of complex outputs at each
receiver has random fluctuations following a Gaussian distribution for both real and
imaginary components. This results in the model spectrum having the statistical fluc-
tuation following the χ2 distribution with two degrees of freedom, because the power
spectra are the squared sum of complex received signals. The spectrum with this fluctu-
ation, Ŝ(ω), can be simulated using the random numbers Xr(ω) that follows χ2

2 :

Ŝ(ω) = S(ω;PS,vd,σd)Xr(ω) . (2.5)

To generate complex time series at the phase origin, so(t), the inverse Fourier transform
F−1[(·)] is used on Eq. (2.5):

so(t) = F−1
[√

Ŝ(ω)∠Ur(ω)

]
, (2.6)

where Ur(ω) represents the random numbers following the uniform distribution in [0,2π),
and notation A∠B means a complex number with amplitude A and argument B.

The time series at each receiver si(t) can then be calculated from so(t), using the gain
of each receiver gi(θo,ϕo) and the array manifold vector A(θo,ϕo):

si(t) = Ai(θo,ϕo)gi(θo,ϕo)so(t) , (2.7)

where (θo,ϕo) is the main beam direction.
The advantage of this method is its simplicity. The desired spectral shape can eas-

ily be designed by this method, and the resultant spectrum well simulates the nature
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of atmospheric spectrum. Hence, this technique is used in various applications (e.g.,
Nishimura et al., 2012; Yamamoto et al., 1988). In Chapters 2 and 3, this is the method
for generating atmospheric echoes.

One of the problems of this method is the lack of continuity between successive spec-
tra. Difficulties in describing the nature of distributed targets also arises, although this
can be overcome by the model introduced by Valaee et al. (1995), that uses the general-
ized array manifold vector Ā(θ ,ϕ) instead of A(θ ,ϕ) in Eq. (2.7):

Ā(θ ,ϕ) =
∫∫

A(θ ,ϕ)δ (θ ,ϕ)dθdϕ , (2.8)

where δ (θ ,ϕ) is the angular distribution of the scatterer. In this case, this is determined
by the power directional pattern of the main beam.

Distributed scatterer model

This method is proposed by Holdsworth and Reid (1995). At the beginning of a simula-
tion, point scatterers are randomly placed in the enclosing volume, which is defined by
a cylindrical volume enclosing the effective beam width and the target range gate. This
must be sufficiently larger than the actual radar volume shown in Fig. 1.3.

The amplitude of the signal from each scatter is determined from the random reflec-
tivity ratio assigned to each scatterer as well as the weighting function for the position
of the scatterer, defined by the effective beam width and the range weighting function.
The phase is determined by the distance between each receiver and each scatterer. Each
scatterer is characterized by its reflectivity ratio 0.5 ≤ pk ≤ 1, and three-dimensional
location lk(t). Let the location of i-th receiver be Li, and the phase center be Lo. The
two-way distance dik(t) and the direction (θik(t),ϕik(t)) from i-th receiver to k-th scat-
terer are computed as:

Vik(t) = lk(t)−Li = [xik(t),yik(t),zik(t)] , (2.9)
dik(t) = ∥Vik(t)∥+∥lk(t)−Lo∥ , (2.10)

θik(t) = arccos
zik(t)

∥Vk(t)∥
, (2.11)

ϕik(t) = arctan
xik(t)
yik(t)

, (2.12)

where Vik(t) is the radial vector from i-th receiver to k-th scatterer. The range weighting
function Rk(t) is defined as a Gaussian function (Cheong et al., 2004):

Rk(t) = exp
[
−(dik(t)− ro)

2

4σ2
r

]
, (2.13)
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where σr = 0.34c∆T/2 is a typical selection for the rectangular Tx pulse (Doviak et al.,
1979). The power weighting function Pk(t) is defined as follows:

Pk(t) = exp
[
−sin2(θik(t)−θo)

sin2 θb

]
, (2.14)

where θo is the zenith angle of the beam direction, and θb is the half power half width of
the radar beam; see Fig. 1.3. The time series from k-th scatterer measured at i-th receiver
channel then becomes:

si(t) = gi(θik(t),ϕik(t))pkRk(t)Pk(t)exp
[

j2π
dik(t)

λ

]
, (2.15)

where gi(θ ,ϕ) is the gain of i-th receiver.
For every sample time, the position of each scatterer is updated along with the back-

ground wind, and the turbulent motion generated by mutual interaction among scatterers:

lk(t +∆t) = lk(t)+
[
vbk +vtb,k(t)

]
∆t , (2.16)

where vbk is the background-wind velocity vector, and vtb,k(t) is the turbulent velocity
vector. vtb(t) is calculated using the random turbulent motion vector v j assigned to j-th
scatterer:

vtb,k(t) =
Np

∑
j=1

v j exp

[
−
∥∥lk − l j

∥∥
Ctb

]2

, (2.17)

where Np is the number of scatterers, Ctb is the turbulent scale factor. Ctb = 1 is used
in this thesis. After each update, scatterers that have moved outside of the enclosing
volume are reentered from the opposite side, with new values for random reflectivity
pk and their turbulent motion vector vk. Each component of vk is given by random
numbers following the Gaussian distribution with its standard deviation determined by
the required spectral width of the atmospheric spectrum.

The advantage of this model is the realistic characteristics of generated signals com-
pared with the inverse Fourier transform method, including the continuity of time series
between each periodogram and physical parameters of the radar system. This technique
was originally developed for spaced antenna method (Holdsworth and Reid, 1995), and
also used in the simulation of adaptive clutter suppression and range imaging (Yu et al.,
2010). In Chapter 4, this is used to generate atmospheric signals instead of the method
using the inverse Fourier transform, because the signal loss must be strictly handled in
the proposed algorithm. As mentioned above, the use of the inverse Fourier transform
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and array manifold vector results in the backscattered echo from point-like target instead
of the distributed sources. As mentioned in section 1.7.1, the beam directional error can
be larger than actual in these cases. Therefore, the discussion in Chapter 4 needs the
realistic model introduced herein, especially in evaluating the beam directional error in
section 4.4.4.

The major drawback of this method is its large calculation cost in updating the posi-
tions of scatterers, especially in high frequencies, because the more scatterer density is
needed to accurately represent the distributed scatterer volume with the shorter wave-
lengths. Cheong et al. (2008, 2004) address this problem by using the precalculated
random turbulent motion grids and interpolation technique. However, in VHF band, not
so many scatterers are needed because of its relatively long wavelength. Hence, the
interpolation technique is not used in this thesis.

2.3.3 Clutter signal generation
The clutter sources can be assumed as point targets. Suppose a point scatterer exists at
the 3-D location l(t) = [xu(t),yu(t),zu(t)]. Note that for the stationary clutter, l(t) = l(0).
The two-way distance di(t) and direction (θu(t),ϕu(t)) to the target from the i-th receiver
position Li are calculated as the same manner in Eqs. (2.9) to (2.12). Let Pu be the power
of the clutter signal. The time series ui(t) for this receiver channel is then written as:

ui(t) =
√

Pugi(θu(t),ϕu(t))exp
[

j2π
di(t)

λ

]
. (2.18)

In actual, the clutter power Pu is selected such that the SIDR or INDR becomes the
required value.

2.3.4 Noise generation
Noise is modeled as a complex random number, having real and imaginary parts fol-
lowing a normal distribution. For the i-th receiver channel, the noise ni(t) is defined
as:

ni(t) =
1√
2
[N (0,1)+ jN (0,1)] , (i = 1, · · · ,M) (2.19)

where N (0,1) denotes a random number generator that obeys the normal distribution
with a mean of 0 and standard deviation of 1. Note that the average noise power spectral
density generated by Eq. (2.19), PN , becomes 1, owing to scaling by 1/

√
2.
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2.4 Simulation of adaptive meteor clutter rejection
In this section, the result of numerical simulations of the adaptive meteor clutter rejection
technique for mesospheric radar observations are presented.

2.4.1 Signal generation
In this simulation, each spectrum contains two kinds of echoes, atmospheric and meteor
echoes, as well as the galactic noise. Signal generation procedure for atmospheric echoes
are already mentioned in section 2.3.2. In this simulation, the method based on the
inverse Fourier transform is used. The noise is also generated using Eq. (2.19). Here,
the detail of the generation of meteor trail echoes is presented.

In this simulation, a meteor trail echo is modeled as a backscattering from a linearly
shaped hard target with exponentially decreasing echo power that is moved by the back-
ground wind; i.e. underdense meteor trail. Phases of meteor echoes at i-th receiver,
ωM,i(t), are calculated through the procedure in section 2.3.3. Amplitudes are the square
root of the meteor echo power PM(t), which is known to decay exponentially as (Ce-
plecha et al., 1998):

PM(t) = PM(0)exp
[
−32π2Dat

λ 2

]
, (2.20)

where Da is the ambipolar diffusion coefficient. Da varies with seasons, latitude, and
ranges. Here, Da ∼ 1m2 s−1 at 80 km is used in this simulation. Consequently the time
series of meteor trail echoes si(t) can be obtained as:

si(t) =
√

PM(t)expjωM,i(t) . (2.21)

2.4.2 Adaptive signal processing
After generating received signals for both atmospheric and meteor echoes, the complex
time series X(t)= [X1(t),X2(t), · · · ,XM(t)]T is constructed with the sum of them for each
receivers. The covariance matrix R for sample number kt is generated and updated using
the following set of expressions:

R(0) = X(0)XH(0) , (2.22)

R(kt) = γR(kt −1)+(1− γ)X(kt)XH(kt) , (2.23)

where kt = 1,2, · · · and 0 ≤ γ < 1 is the forgetting factor. In this simulation, γ = 0.995
is used, which is the equivalent of accumulating received signals of about 1500 samples
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to obtain one covariance matrix. The time series of received signals X(t) is synthesized
employing two methods to make a comparison, the NC-DCMP algorithm (NC) and
nonadaptive beamforming. For each renewal of the covariance matrix, an optimal weight
vector W(t) is calculated using Eq. (1.54). The permissive SNR loss LSNR is set as
an increasing sequence of five equal intervals in the range from 0.5 to 3 dB. For the
nonadaptive beamforming, W(t) = A(θo,ϕo) using an array manifold, where the desired
direction (θo,ϕo) is set to (0◦,0◦). The beam synthesis of the received signals using the
weight vector W is performed through Eq. (1.21).

2.4.3 Incoherent integration and meteor trail echo rejection
After the beam synthesis of the received signals and calculation of spectra, the inco-
herent integration is performed by accumulating Ni successive spectra. As mentioned
in section 1.5.2, fluctuation of amplitudes is expected to be reduced to 1/

√
Ni in this

manner. In practice, spectra with strong meteor clutters should be removed from the
integration. A threshold Bt is thus set to 3.5 dB over the peak power of atmospheric
echo PS for deciding which spectrum contains a clutter and should be discarded. In
this simulation, the peak power of an atmospheric echo is known; e.g., +10 dB over
the noise level. The probability of random fluctuations being at least +3.5 dB over the
actual peak power, e.g. +13.5 dB over the noise level in this case, is less than 5% in the
χ2 distribution with two degrees of freedom. Any peak over Bt is thus assumed to be a
clutter.

2.4.4 Detailed simulation settings
Radar system

The target radar system is based on the MU radar at Shigaraki MU Observatory, Japan.
Detailed specifications of the MU radar is mentioned in section 2.2. In this simulation,
all 25 receiver channels in Fig. 2.1 are separately used, forming an adaptive array with
25 degrees of freedom. Observational parameters are listed in Table 2.1. Note that using
Ni = 38 successive spectra for incoherent integration is equivalent to averaging over
about 1 minute.

Experimental parameters

Two types of simulations were conducted. First, assuming an arbitrary range with both
atmospheric and meteor echoes observed, the SNDR were varied and the RMS error of
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Table 2.1: Radar settings used in the simulation of meteor clutter rejection.
IPP 3120 µs
Time resolution 3.12 ms
Range resolution 900 m
Ranges 75 – 127 km
No. of frequency samples Nf 128
No. of range samples Nh 59
No. of incoherent integration Ni 38

the wind velocity estimation were calculated at each SNDR. This is referred to as “sim-
ulation 1”. In this simulation, the meteor clutter was designed to have a echo intensity of
15 dB over the noise level, and a radial velocity of 5 ms−1. Appearance rate of meteor
echoes was 100 %, i.e. each spectrum contains a meteor echo. Note this is not a realistic
setting about the number of meteor trails, but this simulation is intended to test the max-
imum capability of the method and the more realistic situation is given to simulation 2.
The SNDR of the atmospheric echo was changed from 0 to 30 dB over the noise level,
in steps of 5 dB. The SIDR was then moved from −15 dB to 15 dB. Above procedures
were repeated 100 times to obtain the averaged RMS error of the wind velocity estima-
tions. The thresholding of the contaminated spectra stated in section 2.4.3 is not used in
simulation 1.

Second, the same procedure were applied to multiple ranges and records assuming ac-
tual mesosphere observations. This is referred to as “simulation 2”. Again, 100 succes-
sive records of simulation data are generated, and results are averaged. The thresholding
of the spectra explained in section 2.4.3 is introduced in this simulation to conform to
the actual observations. Several additional variabilities are also considered. Appearance
rate of meteor echoes is set to 33 % in this case, i.e., one-third of all spectra contain
a meteor echo. The height distribution of meteor echoes is known to have a Gaussian
form, and has a maximum range at about 90 km (e.g., Nakamura et al., 1991). Hence,
the range distribution of each meteor is simulated as a random variable that follows a
Gaussian distribution with mean of 90 km and standard deviation of 6.7 km. The power
distribution is also introduced as the same manner. For the atmospheric echoes, decays
of the echo power PS with range from the radar and the cyclic variations of the mean
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wind velocity vd assuming a gravity wave are introduced:

PS(r) = PS(rm)D
|r−rm|
S , (2.24)

vd(t) = vd(0)+ vg sin
(

2π
Tg

)
, (2.25)

where rm is the range having maximum echo power, DS is the decay factor for echo
power and vg and Tg are the amplitude and wave period of the gravity wave, respectively.
Tables 2.2 and 2.3 give the detailed parameters for generating atmospheric and meteor
echoes in simulation 2. Note that decibel values are against the noise level.

Table 2.2: Parameters for generating atmospheric echoes in simulation 2.
Decay factor for ranges DS −3dBkm−1 ∼ 0.5
Range at the maximum power rm 78 km
Maximum echo power PS(rm) 15 dB
Spectral width σd 1 ms−1

Amplitude of the gravity wave vg 5 ms−1

Wave period of the gravity wave Tg 33 min

Table 2.3: Parameters for generating meteor echoes in simulation 2.
Center of initial power distribution PM(0) 20 dB
Standard deviation of power distribution 2.5 dB
Center of range distribution 90 km
Standard deviation of range distribution 6.7 km
Appearance rate 33 %
Radial velocity 0 – 25 ms−1

Diffusion coefficient Da 1.0 m2 s−1

Orientation Uniformly random
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2.4.5 Results and discussion
Figure 2.4 is an example of the spectra generated in simulation 1. The horizontal axis is
the Doppler velocity and the vertical axis is the echo intensity. In this case, the SNDR
of the atmospheric echo is set to 10 dB. Lines are the spectra of the atmosphere only,
meteor only, and the synthesized spectra of the nonadaptive beamforming and the NC-
DCMP algorithm. Marks show the peak powers and Doppler velocities of the Truth and
those obtained by the nonadaptive beamforming and NC-DCMP algorithm. Figure 2.5
is the RMS error in the Doppler velocity estimations for each SIDR averaged 100 times,
obtained employing the nonadaptive beamforming and the NC-DCMP algorithm. The
horizontal axis is the SIDR from −15 to 15 dB, and the vertical axis is the RMS error at
each SIDR.

Next, Fig. 2.6 shows the relationship between the accuracy of wind velocity estima-
tions and the echo intensities of the desired or undesired signals for each beam synthesis
method. The left panel of Fig. 2.6 shows the averaged RMS error of the estimated wind
velocity in simulation 2. The horizontal axis is the RMS error of the estimated Doppler
velocity. The solid line is for the case of no meteor clutter, the dashed line is for the
nonadaptive beamforming, and the dotted line is for the NC-DCMP algorithm. The
right panel shows the maximum echo intensity of the atmospheric and meteor echoes
averaged in simulation 2. The solid line is for the atmospheric echoes and the dotted
line is for the meteor echoes. Here, the atmospheric echo has peak power around 78 km,
while the intensity of meteor echoes increases with range. The vertical axes of these two
panels have units of kilometers.

In simulation 1, all spectra are used without thresholding. In such a case, the adaptive
meteor clutter rejection technique is found to improve the accuracy of the wind veloc-
ity estimations especially when the interference is stronger than or almost equal to the
atmospheric echoes. As seen in Fig. 2.4, the meteor clutter is suppressed well by the
NC-DCMP algorithm. Thus, wind velocities are estimated near the true peak by the
NC-DCMP algorithm, while the nonadaptive beamforming gives wrong values contam-
inated by meteor clutters. Consequently, Fig. 2.5 shows that with SIDRs under 0 dB,
as in Fig. 2.4, the echo intensity of meteor clutters is stronger than that of atmospheric
echoes and the nonadaptive beamforming gives incorrect estimations of wind velocity
because of the interference. As a result, the observable echo intensity improves by about
15 dB when employing the NC-DCMP algorithm. In addition, it should be noted that
meteor trail echoes can be extracted employing the same method if needed, by simply
subtracting the obtained meteor-suppressed signals from the original received ones.

In simulation 2, strong interference is suppressed by spectral thresholding. Employing
this procedure, the initial guess of the peak search is made accurate to some extent by
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Figure 2.4: Example of the spectra generated in simulation 1. SIDR is −5 dB.

discarding contaminated spectra in incoherent integration, while fewer spectra result in
more fluctuation in the integrated spectra, which can bring low accuracy. Additionally,
interferences below the threshold remain with no change with the nonadaptive beam-
forming, and this leads to an increase in the RMS error in the spectral fitting for the
nonadaptive beamforming. On the contrary, the NC-DCMP algorithm suppresses inter-
ferences automatically in advance, and improves both the number of spectra discarded
in incoherent integration and the RMS error in the spectral fitting. These trends are
clearly shown in Fig. 2.6. Here, the NC-DCMP algorithm discards only 1.3 % of spec-
tra, while 10.9 % with the nonadaptive beamforming. The average RMS errors at 78 km
are 1.5 ms−1 for the NC-DCMP algorithm and 10.1 ms−1 for the nonadaptive beam-
forming. As seen in Fig. 2.6 (b), the average SIDR of simulation 2 is at most −10 dB
at 78 km. Figure 2.5 shows that even the NC-DCMP algorithm give low accuracy with
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Figure 2.5: RMS errors of wind velocity estimated with the nonadaptive beamforming
and NC-DCMP algorithm.

the SIDR under −10 dB and thus the result is consistent with simulation 1. At higher
ranges, where there are more meteor echoes, the accuracy of the estimated wind velocity
is low for both methods, but the error is about 8 ms−1 less for the NC-DCMP algorithm.
Additionally, the RMS error has a flat floor from 76 to 78 km with the NC-DCMP algo-
rithm, which is about four times as wide as that with the nonadaptive beamforming. This
is the benefit of the adaptive clutter rejection technique and implies the effectiveness of
the technique in mesosphere observations.
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Figure 2.6: (a) RMS errors of the wind velocity estimations of the nonadaptive beam-
forming and NC-DCMP algorithm. (b) Intensities of the atmospheric and
meteor echoes for each range.

2.5 Applying the adaptive meteor clutter
rejection technique to an actual observation

In the previous section, the effectiveness of the NC-DCMP algorithm has been shown in
numerical simulations. This section presents the results of applying the adaptive meteor
clutter rejection technique to actual mesospheric observations.

2.5.1 Observational settings of the radar system
A series of mesosphere observations was made on October 8, 2011 at Shigaraki MU
Observatory, Japan. NR = 100 successive records taken from 14:05 to 15:46. The ob-
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servational parameters are listed in Table 2.4. Figure 2.7 shows the whole observed data
taken by the MU radar. As done in simulation 2 of section 2.4, the time resolution of the
adaptive beam synthesis is 3.12 ms. After the clutter cancellation, Ni = 38 successive
spectra are used for incoherent integration to obtain each record, which is equivalent to
averaging over about 1 minute.

Table 2.4: Radar system settings for the observation made by the MU radar on 14:05 to
15:46 (UTC), October 8, 2011.

IPP 3120 µs
Time resolution 3.12 ms
Range resolution 900 m
Valid ranges 75 – 127 km
No. of time samples Nf 512
No. of range samples Nh 59
No. of incoherent integration Ni 38

2.5.2 Signal processing
The nonadaptive beamforming and the NC-DCMP algorithm were applied to the same
observed data sequence to compare the ability of the two methods to suppress clut-
ter. Procedures of the signal processing are exactly the same as those described in sec-
tion 2.4. Additionally, thresholding and accumulation of spectra were performed as in
the previous section. However, the threshold Bt for removing contaminated spectra is
not known for the actual observation, thus determined as follows. First, adaptive beam
synthesis were performed on all received signals employing the nonadaptive beamform-
ing and the NC-DCMP algorithm. Afterwards, the Fourier transform was applied to
obtain synthesized spectra S(ki,kh,kf), where ki = 1, · · · ,NiNR is the spectral index, kh is
the range index, and kf is the frequency index. The frequency-wise sum of S(ki,kh,kf) is
taken by:

Ŝ(ki,kh) =
Nf

∑
kf=1

S(ki,kh,kf) . (2.26)

Finally, the threshold Bt is selected such that satisfies the following relationship:

p[Ŝ(ki,kh)> Bt]≤ 5% . (2.27)
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Figure 2.7: The range-time-intensity plot for the whole observed data.

for all kh that correspond to 74 – 80 km. Here, p[Ŝ(ki,kh) > Bt] denotes the probability
of peaks in Ŝ(ki,kh) being larger than the current threshold Bt. The purpose of Eq. (2.27)
is to make the number of discarded spectra the same as the number in the simulation of
the previous section. To compute Bt, its value is iteratively enlarged to find the minimum
value that satisfies Eq. (2.27). The overlaid spectral peaks are shown in Figs. 2.8 and 2.9
for the nonadaptive beamforming and the NC-DCMP algorithm, respectively. The hor-
izontal axis is the peak power for each range and the vertical axis is the range. Dashed
lines are the threshold Bt for the spectra of processed employing the two methods.

2.5.3 Results and discussion
Table 2.5 shows the threshold Bt, the defection ratio Rd, and the equivalent number
of incoherent integration N̂i after discarding contaminated spectra. Figure 2.10 shows
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Figure 2.8: Overlaid spectral peaks processed by the nonadaptive beamforming and its
threshold Bt.

the average estimation errors of wind velocity versus the range processed with the non-
adaptive beamforming and the NC-DCMP algorithm, respectively. Note that ranges in
74 – 84 km are extracted in this figure. Thin lines shows the standard deviation of the
estimation error for each range.

Comparison of the defection ratio

Table 2.5 shows that the NC-DCMP algorithm discards only about one-third of the spec-
tra discarded by the nonadaptive beamforming through thresholding in incoherent inte-
gration. Additionally, comparing Figs. 2.8 and 2.9, it is clear that the number of peaks in
spectra processed by the NC-DCMP algorithm that are considered to be meteor clutters
is much less than that in the case of the nonadaptive beamforming. The average suppres-
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Figure 2.9: Overlaid spectral peaks processed by the NC-DCMP algorithm and its
threshold Bt.

sion ratio of meteor clutters is nearly 15 dB, which is the same result as for simulation 1
in section 2.4.

Differences in wind velocity estimation

As seen in Fig. 2.10, the standard deviations of the average wind velocities estimated
with the NC-DCMP algorithm are much lower than those estimated with the nonadaptive
beamforming at 73.7 km and 78 – 80 km. These ranges are considered to be the boundary
regions where atmospheric echoes are weak and meteor clutters are dominant. Above
these regions, atmospheric echoes cannot be observed because of the limitation of the
current radar system. Therefore, it can be concluded that the NC-DCMP algorithm
recovered the whole observable ranges that were not available with the conventional
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Figure 2.10: Estimated wind velocity for each range obtained by the nonadaptive beam-
forming and NC-DCMP algorithm.
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Table 2.5: Threshold Bt for discarding contaminated spectra in incoherent integration,
the defection ratio Rd with thresholding and the equivalent number of inco-
herent integration N̂i for the observation.

nonadaptive NC-DCMP
Bt 31.4 dB 28.6 dB
Rd 13.5 % 4.37 %
N̂i ≃ 32.9 ≃ 36.3

spectral thresholding.

2.6 Summary and concluding remarks
In this chapter, the result of applying an adaptive meteor-clutter rejection technique to
an actual mesosphere observation has been presented.

In section 2.4, results from two numerical simulations are presented. The first one
examined the clutter suppression capability of the NC-DCMP algorithm in a simplified
situation. The NC-DCMP algorithm reproduced the desired signals well at the SNDRs
above 5 dB, i.e., SIDR of −5 dB, which is an improvement of 15 dB compared with
the result of the ordinary non-adaptive beamforming method. The second one was a
more realistic simulation of a mesosphere observation. In this case, the wind velocity
estimated using the NC-DCMP algorithm were with RMS error of less than 1.5 ms−1

with the SIDR of −10 dB, and the spectral fitting was successful for ranges four times
as wide as in the case of the nonadaptive beamforming method.

In section 2.5, the NC-DCMP algorithm was applied to an actual observation made
on October 8 th 2011 by the MU radar. The NC-DCMP algorithm suppressed meteor
clutters by about 15 dB on average, and the number of spectra discarded through spectral
thresholding in incoherent integration with the NC-DCMP algorithm was about one-
third of the number for the nonadaptive beamforming method. Additionally, the standard
deviation of the wind velocity estimation was less than 2 ms−1 for ranges twice as wide
those for the conventional method; i.e., the observable range doubled.

The above simulation and observational results show that the NC-DCMP algorithm is
a good solution for mesosphere observations contaminated by meteor clutters.
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Chapter 3

Adaptive sidelobe cancellation
technique for atmospheric radars
containing arrays with nonuniform
gain

3.1 Introduction
As shown in Chapter 2, the NC-DCMP algorithm is effective method to suppress meteor
trail echoes in mesosphere. In this case, the main array is divided into equal-sized sub-
groups, and outputs of these subarrays are synthesized using a weight vector with each
component aligned with the same order of magnitude, since each subarray has a similar
directional gain function. Such systems are referred to as the uniform-gain configuration
hereafter. Modern atmospheric radars commonly have the uniform-gain subarrays, e.g.,
Hassenpflug et al. (2008); Latteck et al. (2012); Sato et al. (2014).

However, clutter is usually present at low elevation angles. In addition, the noise
power increase caused by adaptive beamforming is known to become large as the degree
of freedom of the array increases Compton (1982). Therefore, it is considered to be
more efficient to add a small number of supplemental antennas that have a high response
to low elevation angles, instead of dividing a large array into uniform shapes. Adaptive
arrays for such nonuniform-gain configurations are known as partially adaptive arrays
(Chapman, 1976; Morgan, 1978; Van Veen and Roberts, 1987), and were first applied
to atmospheric radar observations by Kamio and Sato (2004). Although their devel-
oped method (hereafter referred to as the Kamio method) shows that partial adaptivity
is effective for atmospheric radars, it requires the gain differences between the main and
sub array to be large enough. Hence, the systems that can use the Kamio method has
been limited. In addition, the performance difference between the configurations with
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uniform and nonuniform gain has not yet been studied.
To address these problems, this chapter provides the design and performance eval-

uation of an adaptive clutter suppression technique for nonuniform-gain array config-
urations. In section 3.2, the method for applying the NC-DCMP algorithm on partial
adaptive arrays is presented. The developed method is based on the NC-DCMP algo-
rithm (Kamio and Sato, 2004), with the gain weighting determined by the gain differ-
ences in the desired direction. In section 3.3, the NC-DCMP algorithm on uniform-gain
and nonuniform-gain configurations are compared using numerical simulations. In sec-
tion 3.4, these configurations are examined in actual observations from the MU radar.

3.2 Adaptive beamforming technique for
nonuniform-gain array

In this section, two adaptive beamforming methods for atmospheric radars with nonuniform-
gain array are introduced; the original NC-DCMP algorithm introduced by Kamio and
Sato (2004) and the gain-weighted NC-DCMP algorithm (Hashimoto et al., 2016).

3.2.1 Kamio’s Method
Kamio and Sato (2004) first applied the NC-DCMP algorithm to the atmospheric radar
with the nonuniform-gain configuration. The target system has a high-gain main array
supplemented by additional low-gain antennas. In such a system, the weight for the main
array is kept at 1, and only the sub-array weights are changed. This constraint prevents
the use of the simple diagonal loading technique, so they used the penalty function
method (e.g., McWhirter, 2000) to obtain the solution.

The problem of the penalty function method is its high computational cost. However,
several authors have shown that the solution can be simplified according to the assump-
tion on which the method is based; the gain differences between the main and sub arrays
are large enough (e.g., Curtis et al., 2016; Hashimoto et al., 2016). By using this as-
sumption, the alternative directional constraint C = [1,0,0, · · · ] and constraint response
H = 1 can be adopted in Eq. (1.51). This enables the diagonal loading approach again,
which is mentioned in Eq. (1.54). The method is described as the norm-constrained
PIAA algorithm in this case (Compton, 1979).
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3.2.2 Gain-weighted NC-DCMP algorithm
If the assumption about the gain difference in section 3.2.1 fails, the norm constraint
for the sub array may become too large, causing the increase of the noise level, or the
cancellation of the desired signal. Therefore, the target radar system has been limited to
those with large gain differences for the Kamio method.

Here, the NC-DCMP algorithm is extended to work with any nonuniform gain array
by introducing proper gain weighting into the directional constraint. Suppose there are
multiple receiver channels with arbitrary gains to the desired direction (θo,ϕo):

G(θo,ϕo) = [G1(θo,ϕo),G2(θo,ϕo), · · · ]T (3.1)

By integrating Eq. (3.1) into Eq. (1.51), each element Ĉi (i = 1, · · · ,M) of the modified
directional constraint Ĉ = [Ĉ1,Ĉ2, · · · ]T is defined as follows:

Ĉi =

√
Gi(θo,ϕo)

∥G(θo,ϕo)∥
Ai(θo,ϕo) , (3.2)

∥G(θo,ϕo)∥=
1
M

M

∑
i=1

Gi(θo,ϕo) .

Note that Ĉ is still appropriately normalized, so Eq. (3.2) can be used with Eq. (1.51)
without any modification. It can also be shown that Ĉ → [1,0, · · · ,0]T when G1 ≫
G2 · · ·GM.

The gains of the sub-array antennas to the clutter direction is another important design
factor for the algorithm. Since the gain weighting reduces the contribution of the sub
array, the clutter suppression capability depends on the gains of them to the clutter direc-
tion. Therefore, it is more preferable that the gains between the main and sub array are
orthogonal, i.e., the sub-array antennas do not have the response to the desired direction,
and have high gain to low elevation angles. With such gain differences, the method will
better realize the original sub-array NC-DCMP algorithm (Kamio et al., 2004; Kamio
and Sato, 2004).

3.3 Performance evaluation with numerical
simulations

3.3.1 System model
The simulation model has two antenna arrays, the “main array” and “sub array”. Fig-
ure 3.1 shows the arrangement of antennas of the radar system. This is based on the MU
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Figure 3.1: Antenna position and channel number assignment of the MU radar for both
simulation and observation. The five black circles in the outer groups are
sub-array antennas used in types B and C.
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radar in section 2.2.
For the main array, 18 groups from the center of the MU radar is selected, which are

indicated by the hexagons in Fig. 3.1. Each element is a three-element crossed Yagi
antenna, and the receiver outputs from each of 19 elements in a group are combined
in-phase. The total directional gain of the main array in the azimuth section at ϕ =
0◦ is shown as the solid line (Main) in Fig. 3.2. The dotted line (Hex) represents the
directional gain of a hexagonal sub array in the main array. The main array is used as a
six-channel uniform-gain array, or one high-gain array. For the six-channel uniform-gain
array, each of the nearest three groups arranged in a regular triangle 3i−2,3i−1,3i (i =
1,2, · · · ,6) are synthesized in-phase. For the high-gain array, outputs from all hexagons
are uniformly synthesized.
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Figure 3.2: Azimuth section of one-way directional gains at ϕ = 0◦ for the main array
(Main), and one of the main array channel consisting of 19 crossed Yagi
antennas indicated by a hexagon in Fig. 3.1 (Hex).

For the sub array, three different configurations, A, B and C are considered in this
simulation. The directional gain in the azimuth section at ϕ = 0◦ for the channel number
19 of configurations A, B, and C are shown by the dotted (A), solid (B), and dashed
(C) lines in Fig. 3.3, respectively. Type A uses outer five groups of the MU radar as the
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sidelobe canceller array, which are indicated as 19 – 23 in Fig. 3.1. Each sub-array group
consists of 19 elements, which uses the same element as the main array. Type B uses only
one element from each outer group, indicated by black circles in Fig. 3.1. Each element
is the same as that of the main array. Type C also uses the same element arrangement
as type B, except that each element is modeled as a half-wavelength turnstile antenna
placed at half wavelength above the ground. Note that type C is considered in this
simulation because the ideal element gain function for the sub array should have an
orthogonal response in the beam pattern of the main array, as mentioned in section 3.2.2.
As illustrated in Figs. 3.2 and 3.3, the directional gains of main and type C element are
roughly orthogonal.

Other radar settings are listed in Table 3.1. Details about these observation parameters
are explained in section 3.3.2.
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Figure 3.3: Azimuth section of one-way directional gains at ϕ = 0◦ for one of the sub-
array groups of type A (dotted), B(solid), and C (dashed).
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Table 3.1: Observational parameters of the MU radar.
Center frequency 46.5 MHz
IPP 400 µs
No. beams 5
Pulse code 8-bit Spano codes
No. pulse sequence 16
Time resolution 32 ms
Range resolution 150 m
Ranges 1.5 – 25 km
No. time samples Nt 1024

3.3.2 Signal generation
In this simulation, there are three kinds of signals: atmospheric echoes, ground clutter
and noise. For the atmospheric echoes, the desired direction (θo,ϕo) is set to (0◦,0◦),
and the average peak power of atmospheric echoes PS is set to 20 dB over the noise
floor level PN = 1. The spectral width σd is 1 ms−1, and the Doppler shift vd is set to
1 ms−1. For the ground clutter, five point-like sources around the radar are designed.
The average power from each source PI,i (i = 1, · · · ,5) is 60 dB over the noise floor level
PN . The distance from the radar to each source is 10 km. Directions to each source
(θi,ϕi) are determined by the uniform random numbers for each observation: [60◦,80◦]
for θi and [0◦,360◦) for ϕi. Noise is modeled as complex random numbers which follows
the Gaussian distribution with averaged power PN = 1, assuming galactic noise. For the
detailed signal generation procedure, see section 2.3. Note that the clutter signal only
depends on the incident angle (θ j,ϕ j), because each ground clutter signal is modeled as
a stationary source and its location is independent of time.

Time series of received signals and covariance matrix

Time series of input signals are sampled at discrete intervals for digital signal processing.
Input signals X(k) at sample time k = 1,2, · · · are defined by the sum of signals from all
sources:

X(k) = s(k)+
5

∑
j=1

u j(k)+n(k) , (3.3)

where s(k) is the atmospheric time series, u j is the clutter time series from j-th clutter
source, and n(k) is the noise time series. The covariance matrix of input signals R(k) is
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estimated by the time averaging of 2Nw+1 snapshots around the current sample time k:

R(k) =
k+Nw

∑
ki=k−Nw

X(ki)XH(ki) , (3.4)

where Nw = 512 in this simulation.
As in Table 3.1, the IPP is 400 µs. For every IPP, the observation direction is changed

to five different beam directions, as mentioned in section 1.5.1. In addition, 8-bit Spano
code (Spano and Ghebrebrhan, 1996a,b) is used; 16 consecutive pulses are coherently
integrated for the pulse compression, making the sampling interval 32 ms. Hence, 2Nw+
1 = 1025 snapshots are equivalent to about 32 s.

3.3.3 Signal processing
Signals generated by the following four different configurations are processed by the
adaptive beamforming methods explained in section 3.2. The configurations are: the
six-channel uniform-gain array, six-channel nonuniform-gain arrays of type A, B, and
C. For the uniform-gain configuration, the standard NC-DCMP algorithm is applied.
For the nonuniform-gain configurations A, B, and C, both the gain-weighted NC-DCMP
algorithms and Kamio method (Kamio et al., 2004) are applied, so seven different con-
figurations in total are compared in this simulation. For the gain-weighted NC-DCMP
algorithm, the gain weighting coefficients are determined by the gain differences to the
desired direction. The gain difference between the main and a sub-array group is 19 : 1
for type A, 342 : 1 for type B, and 24775.7 : 1 for type C. H is set to 1, and U is set to
about 1.12, which is equivalent to limiting the SNR loss to less than 0.5 dB.

Once optimal weights are obtained, the power spectrum density is estimated by the in-
coherent integration using Ni = 8 successive periodograms. As shown in Eq. (1.53), the
noise floor increase is proportional to the squared norm of the optimal weight. Because
each periodogram uses Nf = Nt/Ni weight vectors, the factor of the noise floor increase
L̂m, for the m-th periodogram Sm(v) (m = 1, · · · ,8), can be estimated as follows:

L̂m =
1
Nf

∑
km

∥W(km)∥2 , (3.5)

where km = k+Nf(m−1) for k = 1,2, · · · ,Nf represents the k-th index in the m-th peri-
odogram. The noise floor increase can be corrected by dividing each periodogram Sm(v)
by L̂m:

Ŝm(v) = Sm(v)/L̂m , (3.6)
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where Ŝm(v) is the periodogram with SNR loss correction. Finally, the periodogram
after the incoherent integration of eight successive periodograms, Ŝ(v), is written as:

Ŝ(v) =
8

∑
m=1

Ŝm(v) . (3.7)

3.3.4 Statistical evaluation and performance indices
A hundred independent records are generated and the statistical information are col-
lected for all configurations described in the previous section. The clutter suppression
ratio (CSR) Z and SNR loss L are first calculated from each periodogram and then con-
verted to the performance index Q by calculating their ratio. The definition of each index
is as follows.

Z is defined as the ratio of the clutter peak power compared with that obtained by
nonadaptive beamforming:

Z =
PI(Wopt)

Po
I

, (3.8)

where PI(Wopt) and Po
I are the clutter power obtained by each signal processing method

and nonadaptive beamforming, respectively. Z <−60dB means that the clutter is com-
pletely suppressed, because the clutter peak power is set to 60 dB as mentioned in sec-
tion 3.3.2.

Meanwhile, L is defined as the ratio of the decrease of the peak height of atmospheric
echoes in the periodogram normalized by the noise level compared with that obtained
by nonadaptive beamforming:

L =
Po

S
PS(Wopt)

, (3.9)

where PS(Wopt) and Po
S are the peak power of atmospheric echoes in normalized peri-

odograms obtained by each signal processing method and nonadaptive beamforming,
respectively. L > 1 represents the SNR loss factor compared with nonadaptive beam-
forming, and L = 1 means there is no change in the noise power.

The performance index Q is defined as:

Q =− log10 [Z(L−1)] . (3.10)

Larger Q represents the better performance.
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Figure 3.4: (a) Clutter suppression ratio Z and (b) SNR loss L.
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Figure 3.5: Performance index Q.

3.3.5 Results and Discussion
Figures 3.4a, 3.4b and 3.5 display box-and-whisker plots of the clutter suppression ratio
Z, SNR loss L and performance index Q, obtained for the seven different configurations,
with over 100 results for each configuration. The configurations are, from left to right,
uniform-gain NC-DCMP algorithm, Kamio method with the sub-array configurations
A, B, and C, and gain-weighted NC-DCMP (GW NC-DCMP) algorithm with A, B, and
C. The center line of each box shows the median, the upper and lower edges of the box
are the first and third quartiles and whiskers are the upper and lower interquartile ranges.

As shown in Fig. 3.4a, the average clutter suppression ratios are below −60 dB for
most of the methods and configurations, which means that the clutter is almost per-
fectly suppressed. On the other hand, as illustrated in Fig. 3.4b, large SNR losses
can be observed in the uniform-gain NC-DCMP algorithm and Kamio method with the
nonuniform-gain configuration A. Namely, the average SNR losses are about 0.86 dB
and 1.38 dB for the uniform-gain NC-DCMP algorithm and Kamio method A, respec-
tively. The performance indices Q for these cases are 6.81 and 6.06 for the uniform-gain
configuration and the Kamio method A, respectively. In the uniform-gain configuration,
each channel of the main array consists of 19 crossed Yagi antennas with the same el-
ement gain functions. In addition, the alignment of antennas in a group are almost all
the same, which makes the reception beam patterns close to each other. Thus, if there is
clutter from a direction where a high sidelobe exists, it is difficult to suppress it within
a designated norm constraint. On the other hand, the performance degradation of the
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Kamio method with the configuration A is attributed to the directionality pattern of the
sub array. As in Fig. 3.3, the directionality pattern of the each group of the type A
has lower response to low elevation angles, compared with configurations B or C. This
makes it difficult to suppress clutter in low elevation angles within a small norm con-
straint. In addition, the response to the desired direction of the sub array is relatively
high in this configuration. As mentioned in sections 3.2.1 and 3.2.2, the gain differences
between the main and sub arrays must be large for the Kamio method, which is not
satisfied in this case.

In contrast, the gain-weighted NC-DCMP algorithm with the configuration A exhibits
low SNR losses, namely about 0.5 dB in average, which is the same order as the permis-
sive SNR loss designated in this simulation. Therefore, the gain-weighted NC-DCMP
algorithm can limit the SNR loss as desired with any nonuniform-gain arrays. However,
it should be noted that an SNR loss of 0.5 dB is equivalent to a transmitter power loss
of 11 %, which is roughly proportional to the total cost of the radar system. For atmo-
spheric radars that detect extremely weak scattering echoes, the SNR loss of 0.5 dB is
not satisfactorily small.

The configuration B is more preferable in this point of view. The average SNR losses
are 0.31 and 0.24 dB for the Kamio method and the gain-weighted NC-DCMP algorithm,
respectively, as shown in Fig. 3.4b. Q results in 7.80 and 7.92 for these methods, as
shown in Fig. 3.5. Above difference of Q is caused by the treatment of the antenna
gains of the sub array. As shown in Figs. 3.2 and 3.3, the main array and a sub-array
antenna of type B have a gain difference of about 30 dB. However, it is not large enough
for the Kamio method in terms of the assumption about the gain difference stated in
section 3.2.1. In contrast, the gain-weighted NC-DCMP algorithm tolerates such a gain
difference.

Of course, the configuration C is the best system design, if available, because the sub
array is working as an ideal sidelobe canceller. The configuration C shows Q = 8.41 for
the Kamio method and Q = 8.44 for the gain-weighted NC-DCMP algorithm, as shown
in Fig. 3.5. This result is consistent with the original concept of the Applebaum sidelobe
canceller (Applebaum and Chapman, 1976). However, not all systems may have such
ideal gain differences. It is usually difficult to change the element pattern of an existing
radar system. Even with non-ideal gain-differences, however, the gain-weighted NC-
DCMP algorithm works properly, as seen in the configurations A and B.

From the above discussion, it can be concluded that the gain-weighted NC-DCMP
algorithm can sufficiently suppress the clutter at low elevation angles with smaller SNR
loss than the uniform-gain NC-DCMP algorithm or the Kamio method. In addition, the
gain-weighted NC-DCMP algorithm is shown to have a great flexibility to be applied to
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any radar systems with non-ideal gain differences. These characteristics are confirmed
in the next section by an actual observation obtained with the same settings as this sim-
ulation.

3.4 Application to actual observations

3.4.1 Observation Settings
An observation was made on July 2, 2015 by the MU radar at Shigaraki, Japan. The
observation settings are exactly the same as those mentioned in section 3.3.1. There
are five-element sidelobe-canceller array with type B element whose directional gain is
shown as B in Fig. 3.3. Note that these sub-array antennas are chosen from existing
parts of the array, so the element gain function cannot be changed as in the simulation
in section 3.3.

As mentioned in section 3.3.2, the duration of each record is about 32 s. 110 records
taken from 18:00 to 19:00 (LT) are used. The observation has five beam directions, and
the north beam is used, i.e. the beam direction (zenith, azimuth) = (10◦,0◦).

3.4.2 Signal Processing
Two array configurations are considered: the six-channel uniform-gain array and the six-
channel nonuniform-gain array with type B elements. The uniform-gain NC-DCMP, the
sub-array NC-DCMP developed by Kamio et al. (2004), and gain-weighted NC-DCMP
algorithms are applied to each configuration. Note that signals for each channel are
normalized by its noise level before each signal processing method is applied. For this
observation, the norm constraint of U = 1.5 is used, which is equivalent to a permissive
SNR loss of about 1.76 dB. This is the same selection as in Kamio et al. (2004). Other
signal processing parameters are the same as those described in section 3.3.1.

3.4.3 Performance Evaluation Method
Similar performance indices to those introduced in section 3.3.4 can be defined for the
observation. The most important difference is that there are ranges where the detectable
signals or clutter do not exist. To filter these ranges out, the detectability threshold TD in
Eq. (1.32) is first applied to find the ranges with signal of interest.

The CSR, Z, is then calculated using Eq. (3.8) for the ranges where Po
I > TD. The SNR

loss, L, can also be defined as Eq. (3.9) for the ranges where Po
S > TD. However, the peak

positions of the atmospheric echoes need to be estimated, unlike those of the stationary
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clutter. To do this, the periodograms obtained by the uniform-gain NC-DCMP algorithm
are used, because the ground clutter are sufficiently suppressed in this configuration. For
each periodogram obtained by the uniform-gain NC-DCMP algorithm, the position of
the largest peak is searched. Then, L is calculated by Eq. (3.9) using the peak power at
this position. The performance index Q is calculated using Eq. (3.10).

3.4.4 Results and Discussion
Figure 3.6 is an example of the range profiles of the DC component extracted from the
periodogram obtained by the nonadaptive beamforming, uniform-gain NC-DCMP algo-
rithm and gain-weighted NC-DCMP algorithm. The horizontal axis shows the intensity
of the ground clutter, and the vertical axis is the range in km. The result of the Kamio
method is almost the same as that of the gain-weighted NC-DCMP algorithm, so it is
omitted for simplicity. Figure 3.7 is an example of the range section at 5 km. The range
is indicated by a horizontal line in Fig. 3.6. The horizontal axis is the Doppler velocity
and the vertical axis is the intensity. Bases of the decibel values are the noise level in
Figs. 3.6 and 3.7. Figure 3.8 summarizes the CSR Z, SNR loss L and performance index
Q for each signal processing method throughout the observation. The center line of each
box shows the median, marks are the means, upper and lower edges of the box are the
first and third quartiles, and whiskers are the upper and lower interquartile ranges. To
obtain statistical results, 94 ranges from each record are used, so 10340 periodograms in
total are averaged.

First, in Fig. 3.6, the gain-weighted NC-DCMP algorithm and uniform-gain NC-
DCMP algorithm show similar range profiles of the DC components. Figure 3.8 also
reveals that Z is reasonably similar for all three methods.

In contrast, the peak power of the atmospheric echo obtained by the uniform-gain
configuration is about 1 dB lower than that of the gain-weighted NC-DCMP algorithm,
as shown in Fig. 3.7, Therefore, the uniform-gain NC-DCMP algorithm gives a higher
SNR loss by about 1 dB, or 21 % in the linear scale, than the gain-weighted NC-DCMP
algorithm, which is a substantial difference in sensitivity.

Also, Fig. 3.8 shows that the averaged SNR loss L obtained by the gain-weighted
NC-DCMP algorithm is 1.7 dB, which is 1.0 and 0.3 dB smaller than the corresponding
values of the uniform-gain configuration and Kamio method, respectively. The perfor-
mance index Q of the gain-weighted NC-DCMP algorithm exhibits in the highest value
of 1.20, which is 0.52 and 0.14 higher than those of the uniform-gain configuration and
Kamio method, respectively. Note that Q takes smaller values than the simulation in
section 3.3 because of smaller Z. However, the difference among methods are consistent
with those obtained by the simulation in section 3.3.
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Figure 3.6: Range profile of the DC component obtained by the uniform and gain-
weighted NC-DCMP algorithms.

73



−20 −10 0 10 20

0

10

20

30

40

50

In
te
n
si
ty
 [
d
B
]

Nonada tive
Uniform
Gain-weighted

−1 0 1 2 3 4
Do  ler Velocity [m/s]

24
26
28
30
32
34

In
te
n
si
ty
 [
d
B
]

Figure 3.7: Example of the range section at 5 km, which is indicated by a horizontal line
in Fig. 3.6.

74



From the discussion above, it can be concluded that the gain-weighted NC-DCMP
algorithm is the best solution for suppressing the ground clutter in actual observations
among the three signal processing methods considered herein. The gain-weighted NC-
DCMP algorithm can readily suppress the clutter from low elevation angles in actual
observations, and the gain weighting limits the SNR loss to a smaller amount than those
in other methods. As shown in Fig. 3.5, the best element gain function for the sub-array
configuration is the one with the orthogonal directional gain pattern against the main
array. However, this is not tested in actual observations of the MU radar, thus requiring
the further experiments using such sub-array configurations.
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Figure 3.8: Comparison of the performance indices Z, L and Q for the uniform NC-
DCMP algorithm (Uni), the Kamio method (KM), and the gain-weighted
NC-DCMP algorithm (GW) throughout the roughly 1-hour duration of ob-
servations.

3.5 Summary and concluding remarks
An adaptive sidelobe cancellation technique for atmospheric radars with gain weighting
on a nonuniform array has been presented. The method introduces gain weighting into
the NC-DCMP algorithm in accordance with the gain differences in the desired direction
among the receivers.

In section 3.3, the results of the gain-weighted NC-DCMP algorithm was compared
with those of the uniform-gain NC-DCMP algorithm and the Kamio method using nu-
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merical simulations. The gain-weighted NC-DCMP algorithm gave sufficient clutter
suppression capability with smaller SNR loss than the other two methods, even with
non-ideal gain differences between the main array and sub-array. In section 3.4, the
performance of the gain-weighted NC-DCMP algorithm was also tested using actual
observations from the MU radar. The gain-weighted NC-DCMP algorithm gave the best
performance compared with the uniform NC-DCMP algorithm or the Kamio method. In
particular, the improvement in the average SNR loss given by the developed algorithm
is 1 dB (21 %) compared with that of the nonuniform-gain NC-DCMP algorithm, which
is substantially different in terms of system sensitivity.

From these results, it can be concluded that the proper gain weighting is effective on
suppressing clutter at low elevation angles in atmospheric radars. Also, the flexibility
of the algorithm, which handles arbitrary gain differences between the main array and
sub-arrays, is suitable for any existing atmospheric radar system.
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Chapter 4

User parameter-free
diagonal-loading scheme for
clutter rejection on atmospheric
radars

4.1 Introduction
In Chapter 3, the gain weighting is introduced to the NC-DCMP algorithm for applying
the method on any arrays with nonuniform-gain configurations. Recently, the automatic
determination of the diagonal loading level has been extensively studied in the pursuit of
robust beamforming; a thorough review was given by Du et al. (2009). According to this
article, previous algorithms have mainly focused on robustness against steering vector
errors or the poorly estimated covariance matrix using a small number of snapshots. For
wind profilers, however, these problems are not as critical. Indeed, the backscattered
signals are assumed to be returned solely from the volume in the very sharp mainlobe,
and the direction of the center of the volume is that in which the transmitting beam pat-
tern is directed. Therefore, the steering vector for reception is exactly the same as what
is used for transmission. Similarly, the duration over which the covariance matrix is
averaged can be relatively long (e.g., 1 min), so the number of snapshots is sufficient for
estimating the covariance matrix with enough accuracy. Instead, keeping the white noise
gain and beam directional errors as small as possible has more impact on wind profil-
ers, which are expected to detect extremely weak signals. For such purposes, however,
there are currently no suitable adaptive beamforming techniques that can automatically
determine the optimal diagonal loading level.

In this chapter, a novel method to automatically determine the diagonal loading level
for robust adaptive beamforming on atmospheric radars is presented. The developed
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algorithm estimates the output powers of interference and noise simultaneously, and
automatically determines the optimal diagonal loading level that balances the increase
in the remaining clutter power with the increase in noise power to maximize the total
detectability of the desired signal.

4.2 Proposed power balance algorithm
As described in section 1.7.2, the NC-DCMP algorithm has a user-defined parameter
LdB to obtain the diagonal-loading level. This is not optimal in terms of the signal-
to-interference ratio (SIR). Here, a novel algorithm is proposed that automatically de-
termines the optimal diagonal-loading level to balance the SNR and SIR degradations
in power spectral density ratios. In this section, the derivations of the SIR and SNR
degradations are presented followed by the formulation of the proposed algorithm.

4.2.1 Estimation of SNR and SIR degradations
Figure 4.1 shows the output power diagram of the desired signal PS, interference PI(α),
and noise PN(α) obtained using nonadaptive beamforming (α∞), the standard DCMP
algorithm (α0), and an intermediate diagonal-loading level α in the range α∞ > α > α0.
Here, α∞ and α0 are abstract values denoting that results are processed by nonadaptive
beamforming and the DCMP algorithm. These notations are used because the non-
adaptive beamforming and the DCMP algorithm can be considered as special cases of
the diagonal-loading beamformer, in which their weight vectors are calculated using
Eq. (1.54) with α = ∞ and α = 0, respectively. The total output power of the beam-
former, PO(α), is written as follows (see also Eq. (1.51)):

PO(α) = PS +PI(α)+PN(α)

= WH(α)RW(α) , (4.1)

where W(α) is the optimal weight vector calculated using Eq. (1.54), with a specific
diagonal-loading value α . Note that PS is not a function of α . As mentioned in sec-
tion 1.7.2, the desired signal is considered to be unchanged by beamforming, especially
when applied to a nonuniform-gain configuration. Hence:

PS = PS(α) = PS(α∞) = PS(α0) . (4.2)

78



= Δ𝑃𝐼 𝛼  

= Δ𝑃𝑁 𝛼  

𝑃O 𝛼∞  

𝑃O 𝛼0  

𝑃𝑁 𝛼  

0 

Nonadaptive DCMP 

𝑃O 𝛼  

Optimal 𝛼 

𝑃𝑆 + 𝑃𝐼 𝛼0  

𝑃𝑁 𝛼0  

𝑃𝑁 𝛼∞  

𝑃𝑆 + 𝑃𝐼 𝛼  

Figure 4.1: Output power diagram for nonadaptive beamforming, the standard DCMP
algorithm, and an intermediate diagonal-loading value α , respectively.
Hatched area indicates the SIR degradation compared with the standard
DCMP algorithm, and dotted area denotes the SNR degradation compared
with nonadaptive beamforming.
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Problems of the DCMP algorithm

One way of maximizing the SINR is to minimize the total output power in Eq. (4.1),
because the signal power is unchanged, as stated in Eq. (4.2). Obviously, this describes
the DCMP algorithm. Although the DCMP algorithm maximizes the SINR, it is not
always optimal in terms of signal detectability. As stated in section 1.5, wind profilers
generally use the Doppler spectrum to estimate radial wind velocity. In such applica-
tions, it is clearly important to retain detectability of the desired signal, i.e., to ensure
that the peak heights of the atmospheric echoes above the noise floor level (Gage and
Balsley, 1978) are as high as possible. According to Kamio and Sato (2004), the DCMP
algorithm can cause a severe increase in the sidelobe level, when the desired signal is
strong. This markedly degrades the detectability of the desired signal because of high
white noise gain. Thus, the standard DCMP algorithm is not suitable for atmospheric
radar applications.

To address this problem, the residual clutter power and increased noise power must be
evaluated separately. In Fig. 4.1, the dotted area denotes the SNR degradation compared
with nonadaptive beamforming, ∆PN(α); while the hatched area indicates the SIR degra-
dation compared with the standard DCMP algorithm, ∆PI(α). Below, the derivations of
these two quantities are explained.

SNR degradation

As shown in section 1.7.2, the output noise power is proportional to the norm of the
weight vector. Therefore, the noise power obtained using the diagonal-loading value α ,
PN(α), can be written as:

PN(α) = ∥W(α)∥2 PN(α∞) . (4.3)

Using Eq. (4.3), the SNR degradation compared to the nonadaptive beamforming, ∆PN(α),
can be written as:

∆PN(α) = PN(α)−PN(α∞) (4.4)

= (∥W(α)∥2 −1)PN(α∞) . (4.5)

To calculate ∆PN(α) using Eq. (4.5), PN(α∞) must be estimated in advance. This is
equal to the average power spectral density of the noise, with appropriate normalization.
The average power spectral density of the noise PN(α∞) is estimated using the segment
method (Petitdidier et al., 1997), explained in section 1.5.4.
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Figure 4.2: Example of the relationship between the SIR degradation factor ∆PI(α) (ab-
scissa) and SNR degradation factor ∆PN(α) (ordinate) for various diagonal-
loading values α . Gray circles indicate the magnitude of α .

SIR degradation

The SIR degradation compared with the DCMP algorithm, ∆PI(α), can be written as:

∆PI(α) = PI(α)−PI(α0) , (4.6)

where PI(α) denotes the interference power obtained using the diagonal-loading value
α . In contrast to PN(α) in Eq. (4.3), PI(α) cannot be directly estimated. However,
the difference in the total output power related to the DCMP algorithm can be used to
estimate ∆PI(α):

PO(α)−PO(α0) = [PS(α)+PI(α)+PN(α)]

− [PS(α0)+PI(α0)+PN(α0)]

= ∆PI(α)+PN(α)−PN(α0) . (4.7)

Note that Eq. (4.7) has been simplified using the relationship defined in Eq. (4.2). Rewrit-
ing Eq. (4.7) yields:

∆PI(α) = [PO(α)−PO(α0)]+ [PN(α0)−PN(α)] . (4.8)
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The first two terms of this equation correspond to the upper hatched area in Fig. 4.1,
which is the difference in the total output power. The latter two terms correspond to the
lower hatched area in Fig. 4.1, which can be interpreted as the hidden SIR degradation
canceled out by the SNR improvement related to employing the larger α .

Effects of the diagonal loading on the SNR and SIR degradations

Figure 4.2 shows the relationship between ∆PN(α) and ∆PI(α) for diagonal-loading val-
ues α from 10−3 to 101.5. The horizontal axis represents the SIR degradation compared
with the DCMP algorithm, ∆PI(α), and the vertical axis denotes the SNR degradation
compared with the nonadaptive beamforming, ∆PN(α). The color of the circles on the
line represents the magnitude of the diagonal-loading value α . Note that this example is
taken from actual observations of the PANSY radar, outlined further in section 4.5. As in
Fig. 4.2, there is a trade-off between the SIR and SNR degradations. Because both have
the same dimensions, the residual clutter power and the increased noise power degrade
the SINR by the same amount.

4.2.2 Formulation of the cost function
In the previous section, the main problem of the DCMP algorithm is first reviewed, and
both the SNR and SIR degradations are derived. Now the optimal cost function for the
power minimization problem is considered, which is suitable for atmospheric radars.

To balance the clutter suppression capability against signal detectability, the proposed
algorithm solves the following minimization problem:

minimize
α

(
f (α) = [∆PN(α)]2 +[∆PI(α)]2

)
. (4.9)

The optimal solution for Eq. (4.9) is the point on the curve in Fig. 4.2 that minimizes
the distance to the origin (labeled as “optimal”). Using this optimal diagonal-loading
level, the SNR and SIR degradations are equal, and the SINR in the spectral density
ratio, i.e., SINDR, is maximized. Hereafter, this method is called the power balance
(PB) algorithm.

As in Eq. (4.9), the sum of squares of the differences between the nonadaptive beam-
forming, ∆PN(α), and the DCMP algorithm, ∆PI(α) are used. However, several other
cost functions can be considered. One of them is the simple sum of these quantities; in
this case, the cost function is written as g(α) = ∆PN(α)+∆PI(α). Again, this is equiv-
alent to the standard DCMP algorithm, which can be naturally understood by rewriting
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Figure 4.3: Example of the relationship between various diagonal-loading values α and
the cost function of the PB algorithm, f (α), and standard DCMP algorithm,
g(α).

g(α), using Eqs. (4.4) and (4.8), as follows:

g(α) = ∆PN(α)+∆PI(α) (4.10)
= PO(α)+δ , (4.11)

where δ = −PO(α0)+PN(α0)−PN(α∞) is a constant. Figure 4.3 shows examples of
such cost function evaluations for f (α) and g(α). The values used are the same as
Fig. 4.2. The abscissa is the diagonal-loading value α , and the ordinate is the cost func-
tion evaluation for the corresponding α . The solid and dashed lines denote the cost
functions f (α) and g(α), respectively. The color of the circles again indicates the mag-
nitude of the diagonal-loading value of α . As shown in Fig. 4.3, the optimal solution
for the standard DCMP algorithm is α0 = 0, as g(α) monotonically decreases as α de-
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creases. As mentioned above, by employing α0, the output SINR is maximized, and
clutter should be suppressed as well. However, increased noise power density might
exceed the peak height of the atmospheric spectrum, and in this case, the signal de-
tectability can be completely lost. In contrast, the proposed PB algorithm evaluates both
the amount of the suppressed clutter and the signal detectability separately. As a conse-
quence, the cost function for the proposed algorithm f (α) reaches a minimum at around
α ∼ 0.3 (labeled as “optimal”). At this point, signal detectability and clutter suppression
are balanced, which eventually maximizes the SINDR.

Another cost function h(α) can be considered using the fact that the output noise
power can be calculated from Eq. (4.3):

h(α) = (1− γ) [PS +PI(α)]2 + γPN(α)2

= (1− γ) [PO(α)−PN(α)]2 + γPN(α)2 , (4.12)

where γ is a scaling factor. The problem with h(α) is the arbitrariness of γ . In general,
PO(α) is much larger than PN(α) because it contains both powers of the desired signal
and clutter. Thus, the scaling factor γ must be set to an appropriate value to balance the
clutter suppression against the white noise gain. However, because the ratio of the clutter
and desired signal in PO(α) is unknown, the scaling factor γ cannot be determined from
the radar observations. In contrast, ∆PI(α) and ∆PN(α) are expected to be of the same
order, making the PB algorithm free of the scaling factor γ .

4.2.3 The procedure for the power balance algorithm
The procedure for the proposed PB algorithm is:

1. Estimate the noise power spectral density ratio using nonadaptive beamforming
PN(α∞).

2. Calculate the optimal weight of the standard DCMP algorithm W(α0), the total
output power PO(α0), and the noise power PN(α0).

3. Find the value of α that minimizes the cost function f (α) by solving Eq. (4.9).

4. If α is greater than the minimum diagonal-loading value αε , then this is the optimal
solution. Otherwise, use αε .

Here, the minimum diagonal-loading value αε is used because the loss of the signal
power caused by the DCMP algorithm cannot be ignored in some situations, e.g., when
the desired signal is very strong and clutter is absent. In these cases, the assumption
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about the signal power in Eq. (4.2) will be violated, resulting in an incorrect estimation
of the SIR degradation in Eq. (4.8). To inhibit the loss of signal power to a negligible
amount, αε can be calculated as follows:

αε = PN(α0)−PN(α∞) = ∆PN(α0) , (4.13)

which is equivalent to the SNR degradation given by the DCMP algorithm. Supposing
there is only desired signal and noise, then the loss of signal power is at least larger than
αε , because the total output power of the standard DCMP algorithm must always be
smaller than the nonadaptive beamforming. The minimum diagonal-loading value αε is
defined to compensate for this loss.

Now, the computational cost of the proposed PB algorithm is considered. The method
is in the class of the nonlinear least-squares problem. Hence, Eq. (4.9) can efficiently be
solved using the Levenberg–Marquardt method (Marquardt, 1963). Because Eq. (1.54)
is evaluated at every step to find the optimal α , the difference in the computational cost
is proportional to the number of evaluations of Eq. (1.54). In this thesis, the inverse
of the diagonally loaded covariance matrix is calculated using the eigendecomposition
(Hudson, 1981):

(R+αI)−1 =
M

∑
i=1

1
βi +α

UiUH
i , (4.14)

where R=∑M
i=1 βiUiUH

i is the eigendecomposition of the covariance matrix, βi is the i-th
eigenvalue, and Ui is the i-th eigenvector. Note that in VHF band, galactic noise power is
usually large enough to make R positive definite, i.e., all βi > 0. Equation (4.14) enables
rapid computation of Eq. (1.54), as eigendecomposition is required only once for each
covariance matrix. Thus, the increase in computational complexity for the proposed PB
algorithm is small.

Here, an example based on actual observations is presented. Section 4.5 describes the
detail of this observation. In this example, each signal block has eight channels, 1024
time samples, and 157 range samples. Because the sampling interval is 51.2 ms, each
block must be processed within about 52 s. In the current implementation, the proposed
PB algorithm required 2–3 times as many cost function evaluations as the NC-DCMP
algorithm. Consequently, the average computational durations were 5.40 s for the PB,
3.68 s for the NC-DCMP, and 2.74 s for the DCMP algorithms on a personal computer
capable of 112 billion floating point operations per second. All these computational
times were sufficiently shorter than the data interval of 52 s. Therefore, it can be con-
cluded that the computational cost of the proposed PB algorithm is comparable with
the conventional NC-DCMP algorithm, and that this method can be used in real-time
applications.
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In the following section, the performance of the proposed PB algorithm is compared
with those of the standard DCMP algorithm and the conventional NC-DCMP algorithm
using numerical simulations.

4.3 System model
In this chapter, the target radar system is the PANSY radar (Sato et al., 2014). It is a
large MST radar at Syowa Station, Antarctic (69.01◦S, 39.59◦E). The center frequency
of the PANSY radar is 47 MHz in the VHF band. The PANSY radar consists of 1045
three-element crossed-Yagi antennas. As shown in Fig. 4.5, the antenna array is divided
into 55 subarrays, each consisting of 19 antennas arranged in a hexagon. Output signals
from these subarrays can be used separately, as an adaptive array with 55 channels.
The block diagram for the signal processing of the PANSY radar is shown in Fig. 4.6.
In addition, the PANSY radar has two linear arrays each consisting of 12 three-element
Yagi antennas, as shown in Fig. 4.5. Each three antennas are synthesized by nonadaptive
beamforming, making the FAI array as eight-channel adaptive array. These are directed
to the magnetic south pole to observe the field aligned irregularities, as mentioned in
section 1.4.2. Figure 4.4 shows the radiation pattern of each antenna array of the PANSY
radar; main, FAI1, and FAI2. This figure shows the azimuth section at 135◦ (SE-NW).

90 60 30 0 30 60 90
Zenith Angle [deg.]

0

20

40

Le
v
e
l 
[d

B
i]

MAIN

FAI 1

FAI 2

Figure 4.4: The radiation pattern of the PANSY radar.
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Figure 4.5: The antenna position and channel assignment of the PANSY radar.
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Figure 4.6: The block diagram of of the PANSY radar (Sato et al., 2014).
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Figure 4.7: The planning (upper left) and current (upper right) antenna arrangement and
the resulting array patterns (lower) of the PANSY radar.

As in Sato et al. (2014), the original antenna arrangement of the PANSY radar was the
quasi-circular dense array with its diameter of 160 m. However, due to heavy snowfall at
the Syowa Station during the winter of 2011, part of antennas was relocated to where the
snow depth is relatively low. This made the PANSY radar to have roughly five distributed
blocks of hexagonal subarrays, shown in the upper right portion of Fig. 4.7. While this
does not change the superficial power aperture product of the array, the antenna pattern
is changed to have much narrower mainlobe, as shown in the lower panels of Fig. 4.7.
Thus, the radar volume V becomes smaller in this case, and the actual received power
including this effect must be evaluated by the spherical integral on the two-way beam
pattern PTR:

PTR =
∫∫

GTx(θ ,ϕ)GRx(θ ,ϕ)dθdϕ , (4.15)
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where GTx(θ ,ϕ) and GRx(θ ,ϕ) are the Tx and Rx beam patterns. PTR corresponds to
the terms GAeV in Eq. (1.14) as follows:

GAeV =
∫∫

GTx(θ ,ϕ)
λ 2

4π
GRx(θ ,ϕ)∆rdθdϕ =

λ 2

4π
PTR . (4.16)

Substituting Eq. (4.16) into Eq. (1.14) yields:

Pr =
Ptλ 2∆r

(4π)3 r4
PTRη . (4.17)

By calculating the actual received power using Eq. (4.17), the current distributed ar-
rangement of the PANSY radar appears to have 4.56 dB smaller echo power than the
originally planned dense circular arrangement. Therefore, it should be noted that the
sensitivity of atmospheric radars cannot always be evaluated by the power aperture prod-
uct when the target system employs a distributed antenna arrangement.

4.4 Numerical simulations

4.4.1 Simulation settings
As mentioned in section 4.3, the target radar system is based on the PANSY radar. In
this simulation, two of the 55 subarrays were not used, reducing the total number of
subarrays to 53, which is the same setting for observations used in section 4.5. Other
observational parameters are outlined in Table 4.2.

As mentioned in section 1.7.2, a nonuniform-gain configuration is preferable to re-
tain the shape of the mainlobe. To confirm this is the case, both uniform-gain and
nonuniform-gain configurations are considered in this simulation. In both configura-
tions, the whole array was divided into eight groups, illustrated in Fig. 4.8. For the
uniform-gain configuration, the array was divided into roughly the same-sized sub-
groups, which are surrounded with polygonal frames in Fig. 4.8. In contrast, for the
nonuniform-gain configuration, seven subarrays, indicated by black circles in a hexago-
nal arrangement, were used as sidelobe cancellers. The other 46 subarrays indicated by
white circles were synthesized by nonadaptive beamforming; these are referred to as the
main array. Figure 4.9 shows the power directionality of the main array and one of the
elements of the subarray in the azimuth section at 45◦.
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Figure 4.8: Antenna position and subarray configuration of the PANSY radar used for
simulations and observations. Each set of antennas surrounded by a polygo-
nal frame indicates a single channel in the uniform-gain configuration. Each
hexagon with black circles indicates a subarray used as the sidelobe canceller
in the nonuniform-gain configuration. In the nonuniform-gain configuration,
all antennas with white circles are synthesized in-phase.
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Figure 4.9: Power directionality pattern of the main array (Main) and one of the subar-
rays of the sidelobe canceller array (SC) used for observations. This is the
section at an azimuth angle of 45◦.

4.4.2 Signal generation
In this simulation, there are three types of signals: atmospheric echoes, noise, and sta-
tionary clutter. The detailed procedures for generating these signals are described below.

Atmospheric echoes

Atmospheric echoes were generated using the atmospheric backscatter simulator devel-
oped by Holdsworth and Reid (1995). Detailed procedure of this method is explained
in section 2.3.2. Table 4.1 lists the simulation parameters used to generate atmospheric
echoes. The time series generated using this simulator for each receiver i = 1, · · · ,M is
written as s(k) = [s1(k) · · ·sM(k)], where k is the sampling time index.

Ground clutter

Ground clutter is modeled by point targets at low elevation angles with random direc-
tions. In this simulation, five point sources were generated at directions determined by
a uniform random number in the range (60◦,80◦) for the zenith angle, and [0◦,360◦) for
the azimuth angle. Thus, the complex time series of the received signal at each receiver
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Table 4.1: Simulation parameters used for generating atmospheric backscatter signals.
Radar frequency 46.5 MHz
Range 10 km
Range resolution 150 m
Beam width 3.6◦

Beam direction (0◦,0◦)
Enclosing volume radius 600 m
Enclosing volume height 500 m
No. of scatterers 200
Background wind (vertical) 1 ms−1

Background wind (horizontal) 20 ms−1

Spectral width 0.5 ms−1

Time resolution 51.2 ms
No. of time samples Nt 1024
SNDR 20 dB, 40 dB

u(k) = [u1(k), · · · ,uM(k)] can be modeled as:

ui(k) =
√

PI

5

∑
j=1

Ai(θ j,ϕ j)Gi(θ j,ϕ j) , (i = 1, · · · ,M) (4.18)

where PI is the total power from all clutter sources, (θ j,ϕ j) is the direction of the j-th
clutter source, and Gi(θ j,ϕ j) is the directionality gain for direction (θ j,ϕ j) of the i-th
receiver. Note that Eq. (4.18) depends only on the incident angle (θ j,ϕ j), because each
ground clutter signal is modeled as a stationary source and its location is independent of
time. The clutter power PI is selected such that the total SIDR obtained by nonadaptive
beamforming is equal to the designated value. Here, the SIDR is defined as the peak
distance between the atmospheric and clutter spectra. The periodogram of the clutter
signal with 8-time incoherent integration is calculated as:

S̄u(vd) =
8

∑
m=1

∣∣F [
WH(km)u(km)

]∣∣2 , (4.19)

where F [·] denotes the Fourier transform, km = k +N f (m− 1) (k = 1, · · · ,N f ) is the
sample index in the m-th periodogram, and N f = 128 is the length of each periodogram.
Then, PI is determined such that the INDR satisfies the following equation:

INDR = PI S̄u(0) , (4.20)
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where S̄u(0) is the zero Doppler frequency component of the periodogram S̄u(vd). Here,
INDR is defined as the peak height of the clutter spectrum compared with the noise floor
level.

4.4.3 Signal processing and performance evaluation
For both uniform- and nonuniform-gain configurations, the DCMP algorithm, the NC-
DCMP algorithm, and the proposed PB algorithm are applied to the received signal
X(k), defined by:

X(k) = s(k)+n(k)+u(k) , (4.21)

where noise n(k) is generated following the procedure in section 2.3.4. The sample
covariance matrix, given by:

R(k) =
k+Nw

∑
ki=k−Nw

X(ki)X(ki)
H , (4.22)

is calculated using 2Nw+1= 513 snapshots around the sampling time index k. The sam-
pling interval is ∆t = 51.2ms, which is equivalent to time averaging over approximately
26 s. The permissible SNR degradation of the NC-DCMP algorithm was set to 0.5 dB,
which corresponds to the norm constraint, U ∼ 1.12. As listed in Table 4.1, the beam
direction is (θo,ϕo) = (0◦,0◦). All antennas have the same element gain function; thus,
the gain weighting coefficients of the nonuniform-gain configuration are proportional to
the number of antennas in the main and subarrays, i.e., 874 and 19. Therefore, G1 = 46
and G2,··· ,53 = 1 are used.

Once the optimal weight vector W(k) has been calculated, the performance of each
method for both configurations is measured by the SINDR and the beam directional
error. The SINDR is calculated through Eq. (2.4). The periodogram of the atmospheric
echo S̄(vd) is calculated in the same manner as the periodogram of the clutter signal using
Eq. (4.19). To calculate the beam directional error, the beam direction (θ(k),ϕ(k)) is
first calculated by determining the direction of the most significant peak of the power
directionality pattern with the optimal weight vector W(k):

(θ(k),ϕ(k)) = argmax
θ ,ϕ

∣∣WH(k)A(θ ,ϕ)
∣∣2 . (4.23)

The beam directional error eb(k) is then calculated by taking the average of the angles
between the two radial vectors V(θ ,ϕ) and V(θ(k),ϕ(k)), as described by:

eb(k) = arccos
V(θ ,ϕ) ·V(θ(k),ϕ(k))

∥V(θ ,ϕ)∥2∥V(θ(k),ϕ(k))∥2 , (4.24)
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where A ·B denotes the inner product of the vectors A and B. Radial vector V(θ ,ϕ) is
defined in Eq. (1.20).

To obtain averages for the SINDR and the beam directional error for both the uniform-
and nonuniform-gain configurations, 100 Monte Carlo simulations were executed for
two SNDR cases: 20 dB and 40 dB. In each simulation, the input SIDR was increased
from −100 dB to 0 dB at intervals of 10 dB.

4.4.4 Results and discussion
Figures 4.10a and 4.10b show the average SINDRs and beam directional errors for
the DCMP algorithm, conventional NC-DCMP algorithm, and the proposed PB algo-
rithm for both uniform- and nonuniform-gain configurations. The input SIDRs are from
−100 dB to 0 dB, while the input SNDR is 20 dB in these figures. Figures 4.11 and 4.12
show the average SINDRs and examples of the reception beam patterns for the DCMP,
NC-DCMP, and PB algorithms, respectively. In these figures, the input SNDR is 40 dB.
The azimuth angle for Fig. 4.12 is 45◦.

As shown by Figs. 4.10a and 4.10b, the nonuniform-gain configuration gives a bet-
ter result than the uniform-gain configuration for all of the signal processing methods,
i.e., it has higher SINDRs and smaller beam directional errors. In particular, Fig. 4.10b
shows that the beam directional error reaches about 0.17◦ for the DCMP algorithm and
the uniform-gain configuration, but is less than 0.08◦ for the nonuniform-gain configura-
tion. It should be noted that during vertical wind measurement, leakage of the horizontal
wind speed can cause severe error. This is because the vertical wind speed is usually
very small, e.g., mostly less than about 0.4 ms−1 in observations from the PANSY radar
(Sato et al., 2014). Thus, such errors are undesirable for the DBS method, although
they can be corrected by calculating the actual beam direction using each weight vector
with Eq. (4.23). In this case, the improvement corresponds to about 0.07 ms−1 smaller
vertical wind speed error, when the horizontal wind speed is 40 ms−1, which is a con-
siderable improvement. These results confirm the discussion of the advantages of a
nonuniform-gain configuration in section 1.7.2; this configuration ensures that the noise
power increase and the loss of the signal power are kept small through gain weighting.
Because other trends for both configurations are almost the same, only the results from
the nonuniform-gain configuration are discussed hereafter.

As shown in Fig. 4.10a, the PB algorithm averages the best output SINDR against
the input SIDR variation. The DCMP algorithm performs similarly, although its SINDR
is about 0.8 dB lower, equivalent to 16.8 % on a linear scale. Note that this represents
considerable degradation in terms of the system sensitivity, because it is equivalent to
the loss of transmitted power. Compared with the PB and DCMP algorithms, the output
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Figure 4.10: (a) Average SINDR, and (b) beam directional error compared with the
nonadaptive beamforming for the DCMP algorithm (DCMP), NC-DCMP
algorithm (NC), and the proposed PB algorithm (PB) in the simulation
for uniform-gain (U) and nonuniform-gain (N) configurations. The input
SNDR is 20 dB.
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SINDRs of the NC-DCMP algorithm are inferior, because of the fixed norm constraint.
The NC-DCMP algorithm only uses information about the noise power increase, result-
ing in a diagonal-loading level which is too strict to suppress clutter in this case. In
contrast, the PB algorithm automatically selects the smaller diagonal-loading level to
suppress these clutter, demonstrating its universality against the SIDR variations.

For the SIDRs above −20 dB, the PB algorithm has a slightly lower SINDR than
the DCMP algorithm, namely about 0.5 dB. This is because clutter is not completely
suppressed in this region, even by the DCMP algorithm. As shown by Kamio and Sato
(2004), the null depth formed by the DCMP algorithm depends on the strength of the
clutter; hence, weak clutter is difficult to suppress. Because the PB algorithm measures
SIR degradation using the difference calculated with the DCMP algorithm, the residual
clutter power estimated by the PB algorithm tends to be larger than the DCMP algorithm.
Therefore, if clutter is left by the DCMP algorithm, then the PB algorithm also fails to
estimate the actual clutter power, resulting in a higher residual clutter power than for the
DCMP algorithm.
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Figure 4.11: Average SINDRs for the input SNDR of 40 dB.
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Although the SINDR of the DCMP algorithm was comparable to the PB algorithm
in the previous case, it degrades markedly, when the input SNDR is 40 dB, as shown in
Fig. 4.11. The SINDR of the DCMP algorithm is on average about 10 dB lower than
that of the PB algorithm. In this case, the loss of the signal power is not negligible for
the DCMP algorithm because the shape of the beam pattern is changed, as shown in
Fig. 4.12. In contrast, the PB algorithm uses the minimum diagonal-loading value to
preserve the main beam shape, as described in section 4.2, which ensures its robustness
against input SNDR variation.
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Figure 4.12: An example of the reception beam pattern synthesized by the DCMP algo-
rithm (DCMP), NC-DCMP algorithm (NC), and the proposed PB algorithm
(PB) when the input SNDR is 40 dB. This is the section at an azimuth angle
of 45◦.

From the above discussion, it can be concluded that the proposed PB algorithm has
desirable characteristics for atmospheric radars, and can clearly replace the conventional
NC-DCMP algorithm. In the following section, the proposed PB algorithm is applied to
observational data to examine its performance in real applications.
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Table 4.2: Parameters for observations made on March 20, 2015, by the PANSY radar.
Radar frequency 47 MHz
Ranges 1.5 km to 37 km
Range resolution 150 m
No. of beam directions 5 (zenith, N, E, S, and W)
Zenith angle for oblique beams 10◦

Time resolution 51.2 ms
No. of frequency bins Nf 128
No. of Incoherent Integration Ni 8
No. of range samples Nr 157

4.5 Application to radar observations

4.5.1 Observations
An observation was made on March 20, 2015, by the PANSY radar at Syowa station,
Antarctic (Sato et al., 2014). The settings are the same as those used in the simulation in
section 4.4, except that only the nonuniform-gain configuration is considered, because it
shows better performance. Here, the north beam directed to (θo,ϕo) = (10◦,0◦) is used.
Observations from 12:36 – 13:15 UTC are used for averaging.

4.5.2 Signal processing
The standard DCMP algorithm, the NC-DCMP algorithm, and the proposed PB algo-
rithm are applied to a nonuniform-gain configuration with eight receivers, as described in
section 4.4.1. Thus, the gain weighting coefficients are set to G1 = 874 and G2,··· ,8 = 19.
This is determined by the number of antennas in each array, as discussed in section 4.4.3.
The permissible SNR loss for the NC-DCMP algorithm is set to 0.5 dB, which corre-
sponds to the norm constraint, U ∼ 1.12.

The performance of the beamformer is evaluated using a periodogram, averaged over
an observation period of about 40 min to reduce statistical fluctuations. The number of
incoherent integrations is 60, and each periodogram consists of Nf = 128 frequency bins.

Before incoherent integration, the noise floor level is corrected using the average
squared norm of the weight vector in a range-by-range manner. Each periodogram S(vd)
is written as:

S(v) =
∣∣F [

WH(k)X(k)
]∣∣2 , (4.25)
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where k = 1, · · · ,Nv is the sampling time index. As discussed in section 1.7.2, the in-
crease in the noise floor level in the periodogram is proportional to the squared norm
of the weight vector. Thus, the periodogram is normalized as in Eqs. (3.5) and (3.6)
according to the average squared norm of the weight vector, Ŝ(v). This can be written
as:

Ŝ(v) = NvS(v)/
Nv

∑
k=1

∥W(k)∥2 . (4.26)

Note that this correction is not only required to compare the results of different adaptive
beamforming algorithms, but also to ensure across range continuity of the noise power.
Otherwise, the noise floor level may have a different bias in each range.

4.5.3 Results and discussion
Figures 4.13a and 4.13b show the Doppler spectra at 6.0 km and 4.2 km, after 60-time
incoherent integration, which corresponds to about 40 min. Thin solid lines denote the
nonadaptive beamforming, dotted lines denote the standard DCMP algorithm, dashed
lines denote the conventional NC-DCMP algorithm, and thick solid lines with black
markers denote the proposed PB algorithm.

As seen in Fig. 4.13a, the strong ground clutter is left in the periodogram obtained
from the NC-DCMP algorithm at 6.0 km. However, this ground clutter is sufficiently
suppressed by the PB and DCMP algorithms, at a cost of about 1 dB additional SNDR
degradation, compared with the NC-DCMP algorithm. The average diagonal-loading
value α for this range is αNC = 2.21×102 for the NC-DCMP algorithm and αPB = 2.57
for the PB algorithm. Such a large difference in α values implies that the ground clutter
in this range is difficult to suppress, using the small norm constraint of U ∼ 1.12. In
this observation, a subarray consisting of 19 elements was used as the sidelobe canceller
array, as described in section 4.4.1. As shown in Fig. 4.9, the power directionality pattern
of the main array exhibits comparable responses at zenith angles around 70◦, from where
the ground clutter is expected. Therefore, the directionality pattern of the subarray may
not be ideal, making the clutter from these directions difficult to suppress using the
designated norm constraint.

In contrast to the 6.0 km case, Fig. 4.13b indicates that the ground clutter is suppressed
by all three methods at 4.2 km. This is probably because the directionality pattern re-
sponse of the subarray at the incident angle of the ground clutter is higher than in the
previous case. The diagonal-loading values support this presumption because they are
much smaller, i.e., αNC = 0.40, and αPB = 0.69.

Now the results for the PB and DCMP algorithms are compared. The SNDR degrada-
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Figure 4.13: Doppler spectra at (a) 6.0 km and (b) 4.2 km, which is averaged for about
40 min.
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tion for the PB algorithm is about 0.9 dB and 0.4 dB less than that of DCMP algorithm,
as shown in the zoomed portion of Figs. 4.13a and 4.13b. These values correspond
to 18.7 % and 8.8 % on a linear scale, representing a substantial difference in terms
of system sensitivity, as mentioned in section 4.4.4. However, the clutter suppression
capabilities of these two methods are the same in both figures. This agrees with the
simulation results in section 4.4, i.e., when the SNDR is about 20 dB and the SIDR is
around −20 dB, the PB and DCMP algorithms work similarly. However, the results
from the simulation have also shown that the DCMP algorithm can cause a severe SNR
degradation with high sidelobes, when the input SNDR is high. Therefore, the PB algo-
rithm gives a better solution, even when SNR degradation caused by DCMP algorithm
is not significant, because the PB algorithm can prevent an unpredictable noise power
increase.

4.6 Summary and concluding remarks
A novel method to automatically determine the diagonal-loading level for robust adap-
tive beamforming on atmospheric radars by balancing the SIDR and SNDR degradations
to maximize the detectability of the desired signals has been presented. The proposed PB
algorithm evaluates the residual clutter power and increased noise power in the dimen-
sion of power spectral density, making the algorithm suitable for applications dealing
with extremely weak signals. The proposed method also shows robustness against high
SNDRs, when the performance of the standard DCMP algorithm deteriorates with high
sidelobes. The algorithm includes a nonlinear least-squares problem, which increases its
complexity compared with the conventional NC-DCMP algorithm. However, the com-
putational complexity is still sufficiently small to be applied to real-time applications.

In section 4.4, the performance of the proposed algorithm was examined using numer-
ical simulations. The proposed PB algorithm shows the greater universality and robust-
ness compared with the DCMP or NC-DCMP algorithms, i.e., it automatically selects
the smaller diagonal-loading value, or equivalently, mitigates the norm constraint when
clutter is strong, and prevents the distortion of the beam pattern when the input SNDR
is high. In addition, its automatic selection of the diagonal-loading level balances the
SNR and SIR degradation, making this algorithm free of user-defined parameters. In
section 4.5, the proposed algorithm was applied to observations from the PANSY radar.
The results confirmed its universality and robustness in real applications. The proposed
algorithm sufficiently suppressed ground clutter, even in ranges where the conventional
NC-DCMP algorithm failed, with a smaller noise floor increase than the standard DCMP
algorithm. From these results, the proposed PB algorithm is suitable for wind profilers,
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and can readily replace the conventional NC-DCMP algorithm.
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Chapter 5

Concluding remarks

This thesis has proposed the optimal array design and a novel robust adaptive beamform-
ing algorithm for suppressing clutter in atmospheric radars. The proposed beamforming
techniques were applied to actual observations from atmospheric radars, and the results
confirmed the effectiveness of these techniques. The optimal array design is effective
in both improving the clutter suppression capability and keeping the white noise gain
lower than the ordinary equally-divided adaptive arrays with the same degrees of free-
dom. The proposed adaptive diagonal loading scheme automatically balances the SIR
and SNR degradations to maximize the total detectability of the desired signal. Further-
more, the results from simulations and observations have shown that these two concepts
can be applied at the same time, bringing the universality and robustness in suppressing
the ground clutter compared with the conventional designs and algorithms.

In Chapter 2, the norm constrained power minimization approach was applied to the
mesosphere observations of the MU radar. The applied NC-DCMP algorithm has been
shown to be effective for improving the accuracy of the wind velocity estimation in
mesospheric radar observation. The number of spectra discarded by the spectral thresh-
olding to reject the contamination of meteor trail echoes was decreased because the
meteor clutter was sufficiently suppressed by the adaptive beamforming. The weak me-
teor clutter that cannot be detected by the conventional spectral thresholding was also
mitigated, thus expanding the observable range twice as wide as those given by the non-
adaptive beamforming.

In Chapter 3, the optimal array design was investigated using numerical simulation
by comparing two array configurations with the same degrees of freedom; uniform-gain
configuration with equally-divided subarrays, and the nonuniform-gain configuration
with a large main array supplemented by small sidelobe canceller subarrays. The results
from the simulation have shown that the nonuniform-gain configuration is the more suit-
able array design, because it can achieve both the higher clutter suppression capability
and smaller white noise gain compared with the uniform-gain configuration. Further-
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more, the gain orthogonality between the main and sub arrays has been shown to be the
key, i.e., the element gain function of the sidelobe canceller array should not have the
response at the desired direction. The gain-weighted NC-DCMP algorithm strictly han-
dles these gain differences to improve the clutter suppression capability per unit SNR
degradation. The performance evaluation using the observational data from the MU
radar has shown the consistent results with those in numerical simulations confirming
the effectiveness of the partial adaptive array in atmospheric radars.

In Chapter 4, a novel diagonal loading scheme for balancing the SNR and SIR degra-
dations was proposed. The proposed PB algorithm evaluates both the residual clutter
power and increased noise power in dimensions of power spectral density as the esti-
mated SIR and SNR degradations, respectively. The optimal diagonal-loading value is
determined by balancing these two factors to maximizing the signal detectability in the
spectrum. The results of applying the proposed algorithm to the observational data from
the PANSY radar have shown that it has the better clutter suppression capability than
the conventional norm constrained approach. Furthermore, the proposed algorithm has
shown the robustness in the high SNDRs case when the performance of the standard
DCMP algorithm deteriorates with high sidelobes.

Above results confirm that the proposed gain-weighted array design and PB algorithm
can improve the accuracy of the wind measurements of atmospheric radars. While the
outcome of these proposed techniques are quite promising, several more steps are re-
quired to actually improve the accuracy of the weather prediction using numerical mod-
els because the number of radars that can utilize such signal processing techniques is still
limited. Hence, further technological innovation are expected to increase the phased ar-
ray radars capable of adaptive beamforming with lower costs. In addition, quantitative
analysis of the improvement in prediction accuracy in relation to the adaptive beamform-
ing is another future work.
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