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ABSTRACT Vital-sign estimation using ultra-wideband (UWB) radar is preferable because it is contact-
less and less privacy-invasive. Recently, many approaches have been proposed for estimating heart rate
from UWB radar data. However, their performance is still not reliable enough for practical applications.
To improve the accuracy, this study employs convolutional neural networks to learn the special patterns
of the heartbeats. In the proposed system, skin displacements of the target person are measured using
UWB radar, and the radar signal is converted to a two-dimensional matrix, which is used as the input of
the designed neural networks. Meanwhile, two triangular waves corresponding to the peaks and valleys
in an electrocardiogram are adopted as the output of the networks. The proposed system then identifies
each individual and estimates the heart rate automatically based on the already trained neural networks. The
estimation error of the interbeat interval computed using our approach was reduced to 4.5 ms in the best case;
and 48.5 ms in the worst case. Experiment results show that the proposed approach significantly outperforms
a conventional method. The proposed machine learning approach achieves both personal identification and
heart rate estimation simultaneously using UWB radar data for the first time. Moreover, this study found that
using the respiration and heartbeat components together may enhance the accuracy of heart rate estimation,
which is counter-intuitive, because the respiration is usually believed to interfere with the heartbeat.

INDEX TERMS Ultra-wideband radar, heart rate, vital signs, convolutional neural networks

I. INTRODUCTION

In recent decades, computer-based vital signs monitoring has
played an increasing role in the medical care and nursing
fields. For example, in hospitals, child care centers, and
nursing homes, heart rate monitoring can avoid many ac-
cidents caused by cardiovascular diseases. Considering that
multiple persons commonly share the same space, an ideal
monitoring system would provide not only accurate vital
data, but also a function to identify each individual. In
this kind of person-specific long-term monitoring system, a
correspondence between the data and the subject should be
built because a mismatch may result in serious problems.
Monitoring approaches using wearable or contact devices are

still the mainstream because they are reliable; and do not
require any extra processing of personal identification. For
example, electrocardiography (ECG) and photoplethysmog-
raphy (PPG) sensors are usually used in heartbeat monitoring
[1]–[3]. Sensors worn on the wrist [4], [5] or in the ear [6]
have also been designed to monitor vital signs. However,
wearing these devices is troublesome; and may cause skin
discomfort [7]. Some researchers have designed contactless
monitoring using cameras [8]–[11], but these methods are
sensitive to illumination change and visual occlusion.

In contrast to these sensor-based or camera-based ap-
proaches, radar has been considered a more comfortable
and reliable option for monitoring vital signs [12]–[17]. To
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estimate the heartbeat and respiration rate, some approaches
use the Fourier transform [12]–[14] and others adopt fea-
ture extraction [15]–[17]. Recently, ultra-wideband (UWB)
radar has been proved to be more efficient than continuous-
wave (CW) radar in measuring small skin displacement
because it can suppress interfering echoes from different
distances [19]–[30]. Nevertheless, radar-based monitoring
systems have two major problems. One is that the perfor-
mance is always degraded by the interference between the
heartbeat and respiration components. To address this issue,
some researchers have adopted filtering based on Fourier
analysis, wavelet analysis, eigen features, and other methods
[21], [22], [38]. Although there has been good progress on
this front, it is still challenging to separate the respiration
and heartbeat components [18], [23]. The other challenge
is regarding the identification of individuals among multiple
persons, because, in contrast to the camera-based methods,
identifying individuals requires extra processing when using
a radar for the measurements.

To solve these problems, the present paper applies con-
volutional neural networks (CNNs) instead of traditional
techniques to our heartbeat monitoring system. Although
some recent studies have reported that a CNN is efficient
in classifying ECG data [31]–[36], most such studies aim
to classify normal and abnormal ECG waveforms without
any radar signals involved. To the authors’ knowledge, no
study has been conducted for processing radar data to identify
individuals as well as estimate the heart rate simultaneously.
The heart rate is estimated by measuring the interval between
two adjacent unique patterns of the heartbeat. Therefore, we
exploit CNNs to regress a time-varying curve which carries
the unique patterns.

In this paper, a time series of the phase of radar sig-
nals is used as the input of the CNNs, and two triangular
waves that correspond to the R and S waves respectively
are designed to be the output of the CNNs, which is trained
by solving a regression problem. The contributions of the
present paper are listed as follows: (1) This paper proposes
a novel heartbeat monitoring system that significantly im-
proves estimation accuracy. (2) Instead of using the raw ECG
waveforms, this paper introduces two triangular patterns for
training the CNNs. Triangular patterns corresponding to the
R and S waves (early and late ventricular depolarizations)
are proposed to achieve a better regression than that realized
by using ECG directly. (3) This paper has found for the
first time that the respiration component of the radar data
improves the accuracy of the heartbeat estimation, which
defies the common belief in this field that the respiration
component interferes with the heartbeat component and de-
grades the overall accuracy. (4) This paper realizes person-
specific heartbeat monitoring using a radar system for the
first time, because the identification of each subject can be
automatically achieved by the CNNs.

When a CNN is used for person-independent classifi-
cation, a large number of training data are required, and
the training process needs an unacceptably large amount of

computational resources. However, in our system, we can
train each CNN specifically for each subject in advance; so
that it can automatically identify each subject and estimate
his or her heart rate. Our study in this paper found that
a small number of training data were sufficient to achieve
high performance in person-specific monitoring. The pro-
posed approach is expected to play a crucial role in realizing
an accurate long-term and noncontact heartbeat monitoring
system in a variety of applications.

II. HEARTBEAT MONITORING USING UWB RADAR
This section introduces the basic theory of heartbeat moni-
toring using UWB radar data, and also explains an existing
algorithm that outperforms many other methods [18].

A. DISPLACEMENT MEASUREMENT BASED
HEARTBEAT ESTIMATION
In this subsection, we briefly explain the basic principle of
heartbeat estimation using a UWB radar system. Detailed
analyses can be found in [19], [20]. We define the received
radar signal at time t and range r as s(t, r), which is complex-
valued, where the real and imaginary parts are the in-phase
and quadrature components. We manually select range r0
corresponding to the position of the target subject. Then, a
displacement of the target can be obtained as

d(t) = unwrap {∠s(t, r0)}λ/4π, (1)

where d(t) is the estimated displacement of time t, ∠ is the
phase operator of a complex number and obtained using an
arctangent demodulation, λ is the wavelength at the center
frequency, and unwrap {·} is an unwrapping process that
obtains a smooth phase sequence considering the phase ambi-
guity of 2nπ, where n is an integer. The unwrap function used
in this study corrects the phase of a complex-valued sequence
by adding multiples of ±2π when absolute jumps between
adjacent samples are greater than or equal to π. Therefore,
the resultant phase sequence becomes smooth [42]. We note
that the estimated displacement contains both respiration and
heartbeat components.

B. TOPOLOGY-FEATURE-BASED ALGORITHM
A topology-feature-based method (TF Method) for the radar-
based heartbeat estimation has been shown to be one of the
most accurate existing algorithms [18]. The skin displace-
ments corresponding to the heartbeats have quasi-periodic
patterns, so the computation of the interbeat interval (IBI;
also the reciprocal of the instantaneous heart rate) can be
realized by measuring the intervals between adjacent quasi-
periodic waveforms that are topologically similar. This kind
of topological similarity is exploited to improve the accuracy
in the measurement of heartbeat using UWB radar systems
[18]. However, the TF Method still has some challenges, e.g.,
the performance is occasionally degraded by the interference
between the heartbeat and respiration components. More-
over, individuals cannot be identified based on radar signals
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using the TF Method; that needs to be done by other tech-
niques. Because no other existing techniques can solve these
problems, we explore the use of machine learning methods
to replace the conventional signal processing methods. The
major purpose of the research is to verify the efficiency of
machine learning methods when they are applied to radar-
based heartbeat monitoring and individual identification.
Among the various machine learning algorithms, we choose
CNNs because they have been reported to be remarkably
effective in processing various types of data [43].

III. PROPOSED ALGORITHM
A. USER SCENARIO FOR THE PROPOSED ALGORITHM
In this section, first we describe a user scenario for the
proposed heartbeat monitoring system. The proposed system
is designed to be used in a space shared by several people,
such as a home, office, or hospital. In the initialization setup,
a new user is required to register his/her name and user
ID, and remain seated or lying still for 100 s a few meters
away from the radar system, with ECG electrodes attached
to his/her chest. After the measurement, the pair of radar
and ECG data are used to train the user’s person-specific
neural network. Once this initialization setup is complete,
the user can always be identified and his/her heart rate can be
monitored when the user is in static scenarios. Note that heart
rate estimation is person-specific in the proposed system. If
the CNNs are trained for general people (i.e., not person-
specific), then the system cannot identify which user is under
test, which makes heartbeat monitoring useless in a space
shared by multiple people.

B. STRUCTURE DESIGN OF THE CNN
Fig. 1 shows the layers of the CNN used in this study.
It contains one input layer, two convolutional layers, one
rectified linear unit (ReLU) layer, one fully connected layer,
and one regression layer. The size and number of filters
are determined empirically as shown in Fig. 1. The CNN
in this study do not contain pooling layers because a study
[39] reported that the use of pooling layers can degrade the

FIGURE 1. Layers adopted for each CNN: the five CNNs share the same
layer layout, but they are trained independently and in parallel.
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FIGURE 2. Proposed networks that contain five independent CNNs. Each
network is trained using radar and ECG data for each user.

accuracy of estimation. As illustrated in Fig. 1, the input
sequence of each CNN is a two-dimensional (2D) matrix,
and the output of each CNN consists of two one-dimensional
time sequences of signals. The regression layer here aims at
changing a classification network into a regression network.
The CNN is trained to find a connection between a time series
of ECG data and a time series of radar data.

We specifically selected the CNN rather than other ma-
chine learning algorithms because the CNN was reported
to be more effective in learning nonlinear relationships than
other machine-learning methods [44]. Additionally, estimat-
ing the heart rate using radar data is considered highly
nonlinear. The main focus of this study is to demonstrate
the effectiveness of the machine learning approach in radar-
based heartbeat monitoring. It is also important to compare
different machine learning algorithms for radar-based heart-
beat monitoring, which will be performed in future studies.

C. INPUT SAMPLING FROM UWB RADAR DATA
If the radar and ECG devices share the same clock and they
are completely synchronized, a single CNN is sufficient for
the estimation of the heart IBI of each user. However, when
radar and ECG devices have independent local clocks, the
devices cannot be always completely synchronized, which
is the case in our experiment; a time deviation between the
devices degrades the accuracy of the heart IBI estimation
when using a single CNN. Because the time deviation be-
tween the devices varies over time, an initial calibration
cannot resolve the synchronization issue. This is why we
introduced a parallel structure with multiple CNNs, as shown
in Fig. 2. Specifically, the proposed network contains five
CNNs, where the input sequences to these CNNs are time-
shifted by zero, ∆t, 2∆t, 3∆t, and 4∆t, where ∆t = 0.12
s. The output sequences from the CNNs are averaged to
estimate the heart IBI, which enables the proposed CNN-
based algorithm to tolerate a time delay of up to 0.48 s.
Increasing the number of CNNs in the proposed network
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would make the system even more robust against a longer
time deviation. The selection of the number of CNNs and
time shift intervals depends on the actual synchronization
accuracy of the devices.

In our system, the time sampling interval of the radar
is δ = 0.24 ms and that of the ECG signal is 2.0 ms.
Radar displacement signal d(t) is filtered using a bandpass
filter to improve the SNR. Then, the signal is normalized
so that the displacement signal values fall into the range
[0,1]. Next, N samples of the radar displacement signal are
extracted to form an input sequence, where N = 27, 000,
which corresponds to 6.43 s, was empirically selected. The
input sequence is thus expressed as φ(t) = {d(t − T/2 +
δ), d(t−T/2+2δ), · · · , d(t+T/2)}. Its time-shifted versions
φ(t− 2∆t), φ(t−∆t), φ(t), φ(t+ ∆t), and φ(t+ 2∆t) are
the input sequences for the five CNNs, where ∆t = 0.12 s.
The input sequences with a length of 2,700 (the average of
every 10 points) are reshaped into 54× 50 matrices.

D. OUTPUT DATA TRANSFORMATION BASED ON
TRIANGULAR WAVES
To estimate the heart rate, the output waveform of each
CNN is designed to be related to the ECG waveform so
that the heart rate can be computed from the output. A
straightforward approach is to use the raw ECG waveform for
training the CNNs, as shown in Fig. 3. The ECG waveform,
however, changes sharply during the RST interval, which is
different from the smooth radar waveform associated with
the mechanical activity of a human heart. This difference
makes regression a challenging task. To solve this problem,
we use two triangular waveforms corresponding to the R and
S waves respectively for training instead of the original ECG
waveform. Thus, the regression layer of each CNN is used to
estimate the two triangular waveforms.

For each R–R interval, we use the triangular wave shown
in Fig. 4(a) to replace the ECG waveform. Similarly, we use
the triangular wave shown in Fig. 4(b) to replace the ECG
waveform in each S–S interval. Because the R and S waves
are very close, we use an inverted triangular waveform to
represent the S wave to make the waves easier to visualize.
Consequently, the sharply changing RST interval of the ECG
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FIGURE 4. Transformation of the ECG waveforms into two triangular waves.

is transformed into two gradually changing triangular waves.
Next, we give an example to illustrate the relationship among
the radar signals, ECG signals, transformed triangular waves,
and output of the trained CNNs.

First, we trained the CNNs directly using the ECG wave-
forms for comparison. Fig. 5 shows the radar signal, ECG
signal, and estimated curve from the trained CNNs on the
same timeline. Here, the CNNs are trained by other data (not
the data in Fig. 5) from the same participant. We find that
the output of the CNNs is totally different from the ECG
waveform even we use the ECG as the training data. This
is because the sharply changing RST waveforms are difficult
to determine using UWB radar data alone. In the last row of
Fig. 5, the peaks and valleys corresponding to the heartbeat
appear after 19,500 iterations, but the output is not similar
to the ECG waveform. It is similar to a triangular waveform.
This gave us an idea that triangular waveforms should be used
instead of the ECG signals for training the CNNs.

Fig. 6 shows the results when using triangular waveforms,
where the correspondence of the radar, ECG, triangular
waves created from the ECG, and the output of the CNNs
trained by the triangular waveforms, is illustrated. The train-
ing and test data used in Fig. 6 are the same as those used in

FIGURE 5. Relationship among the radar, ECG, and output of the CNNs.
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FIGURE 6. Relationship among the radar, ECG, triangular waves, and outputs
of the CNNs: the four types of data are on the same timeline. The black curves
of the first and the second rows show the radar and ECG signals, respectively.
In the third row, the red curve denotes the triangular waveform corresponds to
the R wave shown in Fig.4(a), and the black curve denotes the triangular wave
corresponds to the S wave shown in Fig.4(b). In the last row, the red and black
curves show the estimated triangular waves related to the R and S waves, res-
pectively, and the two curves are the outputs of the CNNs.

Fig. 5. Fig. 6 shows that the proposed CNN-based algorithm
output waveforms (in the 4th row) similar to the triangular
waveforms (in the 3rd row), which resulted in a heart IBI
error of 26.0 ms, whereas the error was 84.0 ms when the
CNNs were trained using the raw ECG signal instead of the
triangular waveforms. Moreover, when using the triangular
waveform, the number of iterations required for training
was 5,850, whereas it was 19,500 (shown in Fig. 5) when
using the raw ECG signal, which indicates that the proposed
algorithm using the triangular waveforms not only improves
accuracy, but also saves training time.

Next, we investigate the performance of the proposed
CNN-based algorithm using a triangular waveform that cor-
responds to the R wave alone and S wave alone instead of
using both the R and S waves. The average IBI error over
seven participants when using both the R and S waves, R
wave alone, and S wave alone were 20.6 ms, 27.1 ms, and
30.8 ms, respectively. This accuracy improvement can be
explained by the increase in the amount of information used
for training the CNNs. The R-R interval and S-S interval are
not always the same. Thus, using both the R and S waves
allows us to exploit more information about the heartbeat of
the participants.

E. PERSON IDENTIFICATION BASED ON CNNS
The proposed approach identifies individuals based on the
classification capability of CNNs. We suppose that the num-
ber of users is J , we train J networks, where the j-th network
is trained using the radar and ECG data from the j-th user,
as shown in Fig. 2. After training, the CNNs are used for
both personal identification and heart IBI estimation. When
the radar signal from the j-th user is fed to the J trained net-

FIGURE 7. Personal identification: The upper row shows the outputs of the
CNNs when the training and test data are from the same subject. The lower
row shows the outputs of the CNNs when the training and test data are from
different subjects.

works, the j-th network is most likely to generate a triangular
signal with an almost constant amplitude, whereas the other
networks generate relatively weak signals with amplitude
fluctuations, as shown in Fig. 7. The proposed CNN-based
algorithm detects the constant-amplitude triangular signal
using the average peak values defined as

∑Np

i=1 Vi/Np, where
Vi is the i-th peak value and Np is the number of peaks.
The proposed CNN-based algorithm identifies individuals
and estimates the heart IBI simultaneously as follows:

————————————————————————
Step 1: Measure the radar and corresponding ECG signals

from the j-th user (j = 1, · · · , J) and train the j-th network
using the pair of data.

Step 2: After the k-th user is measured using the UWB
radar, input the obtained radar signal to all J networks se-
quentially. Then compare the J output waveforms from these
networks and select the network with the largest average peak
value as a match.

Step 3: We suppose that the r-th network was selected in
Step 2. This mean that the k-th user is recognized by the r-th
network. The output from the r-th network will be used to
estimate the heart IBI of the k-th user.
————————————————————————

When k and r are matched as the above method shows,
the proposed CNN-based algorithm is expected to generate
accurate estimates of the heart IBI. In this study, seven partic-
ipants were tested, and all of them were correctly identified.
Thus, once our CNNs are trained person-specifically, each
subject can be identified using radar data even when the
system processes the data from multiple subjects simultane-
ously. After personal identification, the matched CNN can
be used to estimate the heart IBI of the same subject. This
system is especially suitable for a scenario in which one
space is shared by several people, and their vital signs are
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FIGURE 8. Triangular waves W1(t) and W2(t), represented by the red and
black curves. Then the IBI are computed by (t

(R)
i+1 − t

(R)
i−1 + t

(S)
i+1 −t

(S)
i−1)/4,

where t
(R)
i and t

(S)
i are the peak and valley positions of W1(t) and W2(t),

respectively.

intermittently monitored and recorded over a long period of
time in healthcare applications.

F. CALCULATION OF IBI BASED ON THE CNN OUTPUT
As discussed above, the proposed CNNs produce two trian-
gular waveforms W1(t) and W2(t) that correspond to the
R and S waves of the ECG. Fig. 8 shows how the IBI (the
reciprocal of the heart rate) values are calculated from the
two triangular signals. In Fig. 8, the red and black lines
representW1(t) andW2(t), respectively. The peaks ofW1(t)

and valleys of W2(t) are detected as t(R)
i and t

(S)
i by the

following equations:

t
(R)
i = t, if dW1(t)/dt = 0 and d2W1(t)/dt2 < 0. (2)

t
(S)
i = t, if dW2(t)/dt = 0 and d2W2(t)/dt2 > 0. (3)

Then, the i-th IBI is estimated by averaging (t
(R)
i+1 − t

(R)
i−1 +

t
(S)
i+1 − t

(S)
i−1)/4, where averaging can suppress the influence

of random components.

IV. EXPERIMENTAL RESULTS
In this section, first we explain the system settings in the
experiments, and then we show the comparisons of the con-
ventional and proposed techniques.

A. SYSTEM MODEL AND EXPERIMENTAL SETTINGS
We used a 79-GHz UWB multiple-input multiple output
(MIMO) radar system with four transmitting antennas and
four receiving antennas. The radar chips were developed by
Imec (Heverlee, Belgium), and we integrated the two Imec
chips with a digital control and interface circuit on the radio
frequency circuit board. Using this system, a total of 16 radar
signal channels were collected. UWB radar in the 79-GHz
band has a high-range resolution because the wide bandwidth
of 4.0 GHz is available, and its cost has recently become
significantly inexpensive. Additionally, 79-GHz radar has a
short wavelength, and thus is more sensitive to vital signs.
Considering all these merits, we chose 79-GHz radar in this
study. The pitch between any two adjacent antennas is 4.6

FIGURE 9. Experimental environment: The radar is placed on the left side of
the participant. The distance between the radar and the shoulder of the parti-
cipant is 1.1 m.

mm, which corresponds to 0.92 wavelength [37], [38]. We
measured the radar echo reflected from the shoulder of each
participant. The radar system was placed 0.9 m from the
floor and 1.1 m from the shoulder. We synthesized the data
from 16 channels and applied a beamforming technique to
maximize the SNR. The beamforming uses the eigenvector
that corresponds to the maximum eigenvalue of the correla-
tion matrix of the signal vector as the weighting vector [38].
The experimental setup is shown in Fig. 9, where the radar
measures from the left-hand side of the seated person. The
radar echo from a range that corresponds to the left shoulder
is extracted and used for personal identification and heartbeat
monitoring in this study.

The ECG signals were used as the ground truth in the
evaluation. We used an ECG device (ECG15102017, PLUX
Wireless Biosignals S.A., Arruda dos Vinhos, Portugal),
whose three electrodes were attached to the upper chest of
each participant. The sampling frequency and resolution of
the device were 500 Hz and 16 bits, and the data were
wirelessly transmitted to a receiver via Bluetooth. The ECG
receiver was not synchronized with the radar system.

We measured UWB radar and ECG signals for seven
participants (P1 to P7), whose age and body mass index
(BMI) are listed in Table I. The participants were requested
to be seated and breathing normally. The measurement for
each participant took 300 s. The training procedure is detailed
in Section III. For each participant, we used 50,000 samples
(100 s) for training and another 25,000 samples (50 s) for
testing. The training for each participant took approximately
10 min using the Parallel Computing Toolbox (GPU) of
MATLAB. The CPU and memory of the desktop we used
are i7-6700 @ 3.40 GHZ 3.41 GHZ and 32 GB.

B. COMPARISONS AND RESULTS
We compare the proposed approach with the TF Method [18]
for calculating IBI. For the TF Method, to extract the heart-
beat component while rejecting the respiration component, a
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FIGURE 10. TF Method vs. the proposed method for estimating IBIs for P1.

FIGURE 11. TF Method vs. the proposed method for estimating IBIs for P2.

bandpass filter with low/high cut-off frequencies of 3.1 and
12.0 Hz was used. Because the respiration component was
much larger than the heartbeat component, the high-order
harmonics of the respiration components could interfere with
the heartbeat component. This is why we set the low cut-
off frequency of the bandpass filter to be higher than that in
other studies. Note that the proposed CNN-based algorithm
does not require filtering, as detailed in Section V-C. The
root mean square error (RMSE), and the Mean±STD of the
absolute error are used for the evaluation below.

Figs. 10 to 12 show three examples of the comparison.
In these figures, the horizontal axis represents the time, and
the vertical axis represents the IBIs. Here, the black curves
show the IBIs estimated using the ECG signals, the blue
circles show the IBIs estimated using the TF Method, and
the red curves show the IBIs estimated using the proposed
method. These figures show that the proposed method is more
accurate than the TF Method. From these figures, we also see
that the IBIs estimated using the TF Method are occasionally

FIGURE 12. TF Method vs. the proposed method for estimating IBIs for P3.

TABLE 1. Experiment settings and comparison results for seven participants

P1 P2 P3 P4 P5 P6 P7 Avg.
Participant age 63 33 25 26 25 23 24 31.3
Participant BMI 22.3 25.3 20.7 24.2 25.4 22.2 19.0 22.7
RMSE of
TF Method (ms) 17.3 116.2 125.1 8.8 15.2 32.4 144.5 65.6
Mean±STD of 13.5 75.5 78.3 6.8 12.6 23.4 95.2 43.6

± ± ± ± ± ± ± ±
TF Method (ms) 11.2 87.0 98.2 5.6 9.2 22.7 117.5 50.2
RMSE of
our method (ms) 4.5 26.0 28.1 5.4 13.7 18.3 48.5 20.6
Mean±STD of 3.7 19.2 22.4 4.0 11.6 14.9 33.3 15.6

± ± ± ± ± ± ± ±
our method (ms) 2.7 17.7 17.1 3.5 7.3 10.7 35.6 13.5

inaccurate, which makes the tracking of the heartbeat a diffi-
cult task. Moreover, the RMSE of the TF Method is relatively
large and unstable. By contrast, the proposed method can
accurately estimate the IBIs, even in some difficult cases.
Table I summarizes the comparison results. The results in the
figures and the table verify that the proposed method achieves
an overall better performance than the TF Method, which
demonstrates the efficiency of the CNN-based approach in
heartbeat estimation.

V. DISCUSSION
A. WHY THE CNN CAN ESTIMATE HEART IBI USING
RADAR SIGNALS
The proposed CNN-based algorithm is used to learn the
relationship between the radar and ECG-related triangular
signals for estimating the heart rate. Each cardiac muscle
depolarization followed by repolarization during each car-
diac cycle causes small electric field changes in the skin,
which can be captured by the ECG electrodes. Almost simul-
taneously, the heartbeat also causes small body movements,
which can be detected by UWB radar. Therefore, there should
be a relationship between the radar and ECG signals if they
are measured from the same person at the same time. This re-
lationship is highly nonlinear and difficult to elucidate with-
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out using a machine learning approach. Because CNNs can
learn such nonlinear relationships effectively, the proposed
CNN-based algorithm performs better than the conventional
non-machine learning method.

According to [45], ECG is more accurate than PPG in
monitoring the heart rate. Thus, we use ECG data to train the
CNNs. In future, it will also be important to study the perfor-
mance of the proposed algorithm using PPG. Additionally,
the reproducibility of the heartbeat patterns in ECG data has
been established [46], [47]. Based on this, we use the CNNs
to learn the relationship between the radar and ECG data so
that the radar signals can be associated with the heartbeat
patterns for personal identification and heart rate estimation.

B. WHY THE PROPOSED METHOD CAN OVERCOME
THE SYNCHRONIZATION DEVIATION
Fig. 13 shows an example with a non-zero synchronization
deviation. The first row contains raw radar signals that were
used as the input of the CNNs. The second row contains
ECG signals that were measured as a reference of the ground
truth. The third row contains two triangular waves trans-
formed from the ECG signals shown in the second row.
The fourth row contains the outputs of the CNNs. Fig. 13
shows that the output of the CNNs trained on radar signals
shifted to the right slightly compared with the triangular
waves transformed from the ECG, which demonstrates that
the synchronization deviation occurred during the training
of the CNNs of this subject. The dashed blue and purple
vertical lines show this small deviation visually. Even though
this deviation existed, the heartbeat could be estimated cor-
rectly. The deviation was consistent over time, and the IBI
was calculated from the intervals between adjacent peaks
or valleys. Therefore, the IBI was not influenced by the
synchronization deviation. If we did not use five parallel

FIGURE 13. Comparison of the ground truth with the results from CNNs: The
first and second rows show the radar and ECG, respectively. The red and black
curves in the third row show two rectangular waves corresponding to the R and
S waves, respectively, of the ECG, and these waves are the ground truth. The
red and black curves in the fourth row show the outputs of the trained CNNs.

CNNs, the system could not produce smooth waves when the
synchronization of the radar and ECG signals deviated. The
results demonstrate that our parallel structure is effective in
estimating the heartbeat, even if the radar and ECG are not
synchronized completely.

C. WHY IT IS UNNECESSARY TO REMOVE THE
RESPIRATION COMPONENTS
In previous radar-based heartbeat monitoring studies, the res-
piration component interfered with the heartbeat component,
which lowered the accuracy of the heart rate estimation.
However, this analysis does not apply to the proposed CNN-
based algorithm. In this section, we demonstrate how res-
piration affects the estimation of the heart rate when using
the conventional and proposed CNN-based methods. For
this purpose, we apply a high-pass filter (HPF) with a cut-
off frequency of 0.27 Hz to radar signal d(t) and obtain
dH(t) = HPF0.27Hz[d(t)], which contains a high-frequency
component. We then obtain dL(t) = d(t)−dH(t), which con-
tains a low-frequency component. Note that dH(t) contains
most of the heartbeat component, dL(t) contains most of the
respiration component, and d(t) contains both components.
Fig. 14 shows examples of d(t), dH(t), and dL(t). Fig. 15
shows the heart IBIs estimated using d(t), dH(t), and dL(t),
respectively. These results show that the IBI estimated using
d(t) is more accurate than the IBIs estimated using dL(t) or
dH(t), which implies that it is not necessary to remove the
respiration component when using the proposed CNN-based
algorithm, which provides new insights into the conventional
belief of the negative effect of respiration components [40].

Using dL(t) containing only the respiration component can
rarely estimate the heart rate, which indicates that the heart-
beat component is still more important than the respiration
component, even for the proposed CNN-based algorithm.
Table II summarizes the comparison of the accuracies of the

FIGURE 14. Three different types of radar data: (1) data that contain both
respiration and heartbeat components; (2) data that contain the respiration
component only; and (3) data that contain the heartbeat component only.
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FIGURE 15. Comparison of results obtained from the three different types of
data.

TABLE 2. RMSE comparisons for the results obtained by filters 1 and 2
(without and with the respiration component, respectively)

All RMSEs are in ms P1 P2 P3 P4 P5 P6 P7
TF Method:
without respiration 17.3 116.2 125.1 8.8 15.2 32.4 144.5
TF Method:
with respiration 97.8 52.2 NA 9.2 24.6 67.0 54.1
Our method:
without respiration 27.3 84.3 95.6 10.6 20.6 34.4 97.7
Our method:
with respiration 4.5 26.0 28.1 5.4 13.7 18.3 48.5

proposed CNN-based algorithm and the TF Method using
d(t) and dH(t), where dL(t) is excluded from the compar-
ison because neither algorithm can estimate the heart rate
accurately using dL(t). Note that the second row of P3 is not
available (NA) because of the instability of the TF Method
in this specific case. The table shows that the respiration
component improved the accuracy of the TF Method in most
cases, whereas removing the respiration component degraded
the accuracy of the proposed algorithm in all cases.

These results can be explained by the mechanism of the TF
Method; that is, the TF Method uses the feature points of a
radar signal. When the radar signal contains both respiration
and heartbeat components, the TF Method cannot distinguish
the features of the heartbeat and respiration signals correctly,
which results in its low accuracy. In cases P2 and P7 in Table
II, removing the respiration component degraded the accu-
racy of the TF Method. This is because the high-pass filter
erroneously excluded the heartbeat component in addition to
the respiration component in these two cases. In general, it
is not easy to determine the optimum cut-off frequency to
separate the heartbeat and respiration components because
these components often overlap in the frequency domain. By
contrast, it is noteworthy that the respiration component may
benefit the proposed CNN-based algorithm, which means
that adjusting the cut-off frequency of the filter is not nec-
essary when using the proposed CNN-based algorithm.

D. MOTION OF THE TARGET PERSON

As stated in Section III, we assumed that the proposed CNN-
based algorithm was intended to be applied to a user in
static scenarios, where the SNR remains low, and mostly
unchanged. In general, radar-based heartbeat monitoring of
an active user in motion is challenging, regardless of whether
conventional methods or machine learning methods are used.
Because the purpose of this study is to show for the first time
the effectiveness of machine-learning-based heartbeat moni-
toring and personal identification using UWB radar, tackling
this challenging problem is out of the scope of the present
paper. In future studies, it will be important to investigate the
performance of the proposed CNN-based algorithm when the
target person is in motion.

VI. CONCLUSION

We proposed a CNN-based algorithm to accurately estimate
the heartbeat from a UWB radar signal. The proposed method
uses supervised learning with multiple CNNs trained us-
ing radar-ECG signal pairs as a training set. The experi-
mental results demonstrate that the proposed method not
only improves the accuracy in estimating the heartbeat, but
also simplifies the entire signal processing because the pro-
posed method does not need preprocessing such as multiple-
parameter-based filtering. Interestingly, the proposed method
was found to perform better when the data contain respiration
components, which degrade the accuracy of conventional
algorithms. The smallest, largest, and average RMS errors of
the heart IBI estimated using the TF Method were 8.8, 144.5,
and 65.6 ms, respectively. By contrast, the smallest, largest,
and average RMS errors of the heart IBI estimated using the
proposed CNN-based algorithm were 4.5, 48.5, and 20.6 ms,
respectively. The degree of accuracy improvement was 4.5
times in the best case, 1.1 times in the worst case, and 3.2
times on average. Because the proposed method can identify
the individual among several possible participants, the heart
rate is measured and associated with the individual record
using only radar signals without the need for any additional
information and techniques.

A limitation of this research is that the proposed model
was designed for static scenarios only. In our future work, we
will research how to process different scenarios, for example,
when the subject is in motion, at different orientations, and
under stress. Additionally, we plan to visualize the data flows
inside the CNN in the next stage of our research.
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