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ABSTRACT

A numerical model to simulate radar data is used for testing various estimators of the Doppler shift in Doppler
radar echoes. Five estimators for the Doppler shift are considered: the pulse pair and poly-pulse pair algorithms
in the correlation domain, least squares fitting to the power spectra in linear and logarithmic coordinates, and
a matched filter in the spectral domain. An experiment with real data, to test the algorithms further and to
assess the importance of small-scale wind fluctuations on radar performance, shows that geophysical limitations
on the accuracy of the wind estimates are the dominant factor for observations with good signal-to-noise ratio.

1. Introduction

The use of Doppler radars such as VHF /UHF MST
(Mesosphere-Stratosphere-Troposphere ) radars, wind
profilers (e.g., Rottger 1984) and Doppler weather ra-
dars (e.g., Doviak and Zrni¢ 1984 ) has been widespread
for meteorological purposes over the last ten years.
Statistical errors in the Doppler method of wind mea-
surement have been considered on theoretical and nu-
merical grounds for the case of weather radars (e.g.,
Sirmans and Bumgarner 1975; Zrni¢ 1979), in which
short data records are as a rule used since the antenna
is scanning. This discussion of the accuracy of various
estimators of the Doppler shift makes particular ref-
erence to data having properties similar to those com-
monly found with VHF radar (wind profiler) obser-
vations. Some estimators of the Doppler shift of
weather radar echoes, using both spectral and auto-
correlation techniques, have been discussed by Sirmans
and Bumgarner (1975), who concluded that for
weather radars the autocorrelation method was supe-
rior. The algorithms to be examined are all unbiased
by aliasing. The nomenclature introduced in Doviak
and Zrni¢ (1984) is used here, where practical, with
the addition of a “fading time,” 75, defined by the
time for the autocorrelation function of a time series
to fall to a value of 0.5 (Awe 1964b). The symbols
used are defined in Table 1.
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2. The numerical model

Using a method of constructing artificial data with
realistic statistical properties (May 1988), we drew a
complex time series from a population of Gaussian
distributed uncorrelated random numbers, in which
the real and imaginary components are formed sepa-
rately. This series was convolved with a Gaussian func-
tion so that the autocorrelation function of the time
series had a Gaussian shape (Mitchell 1976, p. 115).
The width of the Gaussian determines the correlation
time of the signal which is inversely proportional to
the spectral width (Table 1). The initial time series
used must be longer than the “final” series to eliminate
end effects. We use S to denote this complex series. A
new time series E can be constructed from S so that it
has a Doppler shift w, given by

E = Selot+¢ 1)

where ¢ is an arbitrary phase constant. Noise can be
added to the time series by simulating random numbers
with a Gaussian distribution. The maximum signal-
to-noise ratio (SNR) obtained with the simulations is
about 30 dB because of such effects as digitization noise.
Note that factors influencing the final shape of the ob-
served spectrum such as window effects are automat-
ically included. In all the simulations here the number
of samples, M, was equal to 256 points (it has been
shown in both the spectral and correlation domains
[e.g., Zrni¢ 1977] that the accuracy of the estimators
will be proportional to 1/ 1274 ). The spectral width and
SNR were varied.

3. Techniques for estimating the Doppler shift

a. Pulse pair technique (PP)

The Doppler shift of the returned signal is propor-
tional to the slope of the phase of the autocorrelation
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TABLE 1. List of symbols.

SN power spectrum of the time series in units of frequency

o(r) autocorrelation coefficient of the time series at a lag =
g, second central moment of power spectral peak in units of
) A
velocity (v =3 f )
Tyn second central moment of the power spectral peak
< - 20,7,
normalized to the Nyquist interval (uw, = %)
SNR signal-to-noise ratio
T, sampling interval for data taking
M number of data points in the time series
To.s lag such that the autocorrelation function falls to a value
0 1874T,
Of 0 5 T0.5 ———
vn
A radar wavelength

hy . 1
nyquist frequency 3T

arg( ) argument of a complex variable

function (at zero lag) of the returned signal. An esti-
mator of the shift is the phase at the first lag divided
by the value of the lag in time units (e.g., Woodman
and Hagfors 1969; Woodman and Guillen 1974 Miller
and Rochwarger 1972); that is,

v = (%)dd)/dt ~ (A) arg[o(THV/Ts.  (2)
T 47

This is a special case of the autocorrelation estimator
of the Dopper shift described in Doviak and Zmmié
(1984) for data with uniformly spaced data points. A
theoretical expression for the variance of this estimator
has been obtained (Zrni¢ 1979; Doviak and Zrnié
1984):

= 2 2 2 29-1 [1 - pz(T.\')]Ts
var(v) = N [32n*Mp*(T,) T,"] [-—__—20',,,,TSV1I'
N? N
+F+2( )[l —p(ZT)]] 3)

where the SNR (S/N) is measured after any coherent
integration of the signals. The values of autocorrelation
p are for the signal component only; therefore, the noise
spike at zero lag in the autocorrelation function is in-
terpolated through and p is renormalized. This expres-
sion was derived by using a perturbation analysis, which
breaks down for cases with very narrow spectral widths
or low values of SNR, unless the data records are very
long (Doviak and Zrnié¢ 1984).

Simulations were performed over a range of fading
times that are considered to be typical for VHF radar
records. Figure 1 shows rms fluctuations of the Doppler
shift about the prescribed value {(v — 7)?)'/? for a
variety of spectral widths and SNRs. Overall the agree-
ment between theory and the results of these experi-
ments is good. When the spectral width was very small
the observed errors became very large. This is because
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data for very narrow spectral widths have very long
fading times; thus the number of independent points
(~ record length /74 5) becomes small, Also note that,
as the SNR decreases, the theory underestimates the
rms fluctuations of the measured Doppler shift at all
spectrum widths, as was the case in the simulations of
Zrni¢ (1977). The agreement between the theory, pre-
vious simulations, and our simulations give confidence
in the method of generating data and to the subsequent
testing of new techniques to analyze the simulated data.

b. Poly-pulse pair technique (PPP)

Some improvement in the estimates may be ob-
tained by averaging more than one value of the phase
divided by the lag (i.e., a weighted average of PP esti-
mates from successive lags). The samples with lower
values of correlation have larger error, so that the es-
timates are weighted In these analyses the weighting
function used is p? because the standard deviation of
the correlation coeﬁ‘lc1ent is proportional to (1 — p2)
(Awe 1964a). If p? falls to less than 0.2 the sample is

then given zero weight. The p? weighting of the auto- -

correlation phases was found experimentally to give
better results than the p weighting. The PPP technique
has been used previously (e.g., Strauch et al. 1978;
Woodman 1985) and résults in marked improvements
for cases with poor SNR (Fig. 2) and small ¢,,, but
no improvement at all was seen in the 30 dB case. The
improvement comes about because of the averaging of
the fluctuations in phase that are due to the contri-
bution of the noise component of the signal. Woodman
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F1G. 1. Curves of the standard deviation of the pulse pair (PP)
estimator against spectral width for various values of SNR. The num-
ber of data points in each time series is 256: solid curves, theoretical
values; circles, the standard deviation of the estimate of the Doppler
shift over 100 simulations for a given spectral width and SNR.
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FIG. 2. The observed standard deviation of the PPP estimator (M
= 256) vs spectral width for the averages of 1, 3, 5, and 9 values of
phase. The simulation results for SNR values of (a) 0 dB, (b) —3
dB. ’

(1985) argued that the application of this method
should give an improvement over the PP method for
samples with good SNR, but the results of these sim-
ulations suggest that this does not occur. As discussed
by May (1988), for autocorrelation functions with good
SNR, the errors in adjacent estimates of the complex
correlation are themselves highly correlated since they
arise because of the finite number of independent sam-
ples rather than because of noise. Thus, averaging does
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not improve the estimates significantly for this case.
One problem that arises is “aliasing” whereby the phase
shift increases by the lag number and folds by factors
of 2= at large lags. Aliasing is easy to account for the
case of small errors and (or) small Doppler shifts (as
in our case ), but may be a significant problem for data
with low SNR, leading to ambiguities in the determi-
nation of the Doppler shifts in real observations.

Four cases are considered in Fig. 2, where the num-
bers of autocorrelation coefficients used are 1 (PP
technique), 3, 5, and 9. When the spectral width is
wide the fading time of the autocorrelation function is
short; the weight given to successive estimates decreases
rapidly and the improvement by using large numbers
of lags is small. The improvement also seems to occur
at wider spectral widths when the data are noisier. As
the number of coefficients to be included in the PPP
is increased, the rate of improvement decreases, sug-
gesting a limit as the values of autocorrelation measured
decrease (Woodman 1985). For practical purposes,
therefore, a limit in the number of coefficients used
depends on typical values of 7 s as well as computing
limitations. Although there was no significant im-
provement of the estimates in the case of high SNR,
there was large improvements in the case of a SNR of
about 0 dB. Sato and Woodman (1982) discussed a
method of a least squares fitting procedure to the com-
plex autocorrelation function, and the PPP method
may be viewed as a simple approximation to the more
complicated analysis they discussed.

It has been suggested that the use of maximum en-
tropy methods (MEM) to find spectral peaks may offer
some advantages (e.g., Klostermeyer 1986). Mahapatra
and Zrnié¢ (1983) also considered some simple forms
of MEM suitable for real-time analysis. We examined
these, but the PPP estimator with three correlation
coefficients (requiring the same amount of calcula-
tions) gave superior results in every case. This contrasts
with the results of Mahapatra and Zrnié¢ (1983) who
found that for short data records and good SNR the
MEM gave smaller variances than the pulse pair
method, although they also found that their MEM
analysis was worse than the PPP for poor SNR.

c¢. Least squares fitting of the power spectrum—Ilinear
case

Doviak and Zrni¢ (1984) also considered the ac-
curacy of the determination of the Doppler shift by a
direct calculation of the first moment of the spectra
(thresholded against noise). For the case of infinite
SNR the errors are identical to errors in the PP method,
but the spectral calculation is more strongly affected
by noise (Doviak and Zrni¢ 1984). However, by use
of such a spectral technique, it is often easier to edit
data, for example, data contaminated by strong, fading
ground clutter (e.g., Sato and Woodman 1982), to
eliminate narrow spikes from the data (e.g., Hocking
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1985) and to analyze bimodal spectra ( Wakasugi et al.
1985). There is also the possibility of using a least
squares fit (LSF) of an analytic function F(a;) (e.g.,
Gaussian or parabola) around the peak to obtain es-
timates of the Doppler shift. This is performed by min-
imizing a function X?(a;) where X?(a;) is defined by

x* = 2 [S(f) - F(a))? C))
f .

by varying the fitting parameters a;. Before applying
the least-squares fit, one views it possible to average
adjacent spectral coefficients to decrease their variance,

- or take shorter datasets and average spectra. However,
this does not improve the levels of accuracy of the fit
compared with the raw single spectrum from the same
total data record, because even though the reliability
of the individual spectral estimates is increased, there
is a corresponding decrease in the number of indepen-
dent points in the spectra.

The least squares fitting routines applied to the spec-
tra here use the method of Marquardt as described by
Bevington (1969, p. 237). A choice must be made
whether to fit the spectrum in linear coordinates or on
a log scale. A Gaussian plus a constant is a good ap-
proximation to realistic data so this simple form is at-
tractive but a severe drawback in use of a linear scale
is that the variance of the individual spectral coefficients
is the square of the magnitude of those coefficients.
Thus when doing a least squares fit, the points with
the largest values, where we want the fit to be best, also
have the largest errors. This means that the X? of the
LSF is determined by only a few points around the
peak, and that information from spectral estimates
away from the peak (which have small amplitude) are
not used (Yamamoto et al. 1988). Thus for the case
of good SNR the errors are somewhat larger than in
the PP method except for very narrow spectral widths
where they are comparable (Fig. 3). A feature of the
high SNR case is the almost linear dependence of the
error on spectral width over the frequency range 0.01-
0.04, in contrast to the ¢, > dependence found over the
other frequencies (and in the PP method). For data
with SNR of about 0 dB, the results are similar to the
PPP when the number of correlation coefficients was
about 5-9. The relative insensitivity to noise when the
spectral width is narrow arises because the spectral peak
of the signal still rises far above the noise level for such
cases, unless the SNR is extremely bad (< —10 dB,
depending on M) when catastrophic errors may occur
because of errors in the initial guesses of the position
of the spectral peaks.

d. Least squares fit to the logS(f)

The alternative, a logarithmic scale, has the imme-
diate attraction that all the spectral coeflicients have
the same variance. In fact, Waldteufel (1976) con-
structed a maximum likelihood estimator that is similar
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FI1G. 3. The observed standard deviation for a least squares fit of
the power spectrum in a linear domain against spectral width for
SNR of 30 dB, 0 dB and -3 dB.

to a least squares fit in a logarithmic domain. Yama-
moto et al. (1988) showed that for ideal Gaussian
shaped spectra, the Cramer-Rao minimum variance
bound, (CRB) (e.g., Doviak and Zrni¢ 1984, p. 113)
may be approached with a LSF in the logarithmic do-
main for the ideal case of infinite SNR and a purely
Gaussian spectrum (no window effects). The variance
achieved with the CRB is an order of magnitude better
than the PPP method. The main drawback here is that
the choice of an analytic function to fit real data is not
straightforward because of window effects, and the fit-
ting is susceptible to spectral artifacts (e.g. Zrnié et al.
1977). The logarithm of a Gaussian function with an
offset is not necessarily the best function since pertur-
bations of the spectral shape by window effects may
cause significant distortions in spectral shape for sam-
ples with good SNR, particularly if the spectral width
is narrow (Sato and Woodman 1982). For our study
we set F(a;) to an offset Gaussian function for the log-
arithmic case, as well as the linear case. That is a better
approximation to the spectral shape for wide spectra
compared with the log of a Gaussian, but it is still a
poor choice for narrow spectra.

The results of this method indicate that for samples
with good SNR, the least squares method gives better
results than the PP for very wide spectra. However, the
response of the variance is rather flat over narrower
spectra, giving worse results over the range of spectral
widths considered typical for MST radars (Fig. 4),
probably because of the effects of window distortion
making the choice of fitting function increasingly poor.
A better choice of function would probably improve
the performance of this estimator, but finding such a
function is difficult since the importance of window

900(6861)9270-025 L/ LES0VE/SEZ/Z/9/3Ppd-8lone/yos)/b10-00s|ewe sjeuinol//:dny woly peapeojumog

'C 00 0 ¢ mopKd GEZO

0Z0z 8unf gz uo 3senb Aq ypd



APRIL 1989

LSF ( logarithmic) -3dB

S+ 0dB

3048

.05

.02 L

I Il 1 1

1 1
002 .005 .0F .02 .05 A .2
NORMALIZED SPECTRAL WIDTH, o,

~ STANDARD DEVIATION /M S.D.(¥/2va)

F1G. 4. The observed standard deviation as for Fig. 3, but for a
least squares fit of the power spectrum in a logarithmic domain.

effects on the spectral shape is itself a function of spec-
tral width (Sato and Woodman 1982). For data with
poor SNR, the fit performs similarly to the PPP pro-
cessor over most of the range of interest, but again
worsens for narrow spectra. Also, fitting the spectrum
on a log scale appears to be more sensitive to low SNR
since the spectral peak does not rise as high over the
noise level in this domain, compared with the linear
case.

e. Matched filter analysis

Another technique is “Matched-filter Analysis”
(Rottger 1986). In this analysis the power spectrum,
S(f) is calculated and then the circular convolution

of S(f),
2/
m(4f) = E)f S(f— Af)S(=1) (5)

is computed where the spectral coefficients outside of
the Nyquist interval have been set to zero. This function
has a maximum at exactly twice the mean frequency
of the peak of S(f) and is claimed to be less sensitive
to asymmetrical and spiky spectra. If the padding of
the spectra with zeros is not applied, the effective
aliasing frequency is halved. It is possible to show that
because the function m(Af) is the Fourier transform
of the square of the complex conjugate of the auto-
correlation function, and m can be calculated by suc-
cessive FFTs (see Appendix ). There are, however, some
drawbacks to this technique. The first is that the prob-
lem of estimating the position of the matched filter
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peak remains. Thus the question of finding the opti-
mum method is open. In fact one possible estimate for
the first moment of m is half the argument of p2(T5).

Figure 5 shows the results when a LSF in a linear
domain is applied to the filter function. Even though
m is much smoother than S(f), the results for low
SNR are similar to those obtained from a direct ap-
plication of a least square fit to S(f) (Fig. 3). With
good SNR the Matched-filter method is as good or bet-
ter than the PP technique. The Matched-filter method
requires more computing, e.g., an additional two FFTs
of double the length of the time series for each sample,
offering little if any improvement. Therefore, it does
not appear to be an attractive alternative except when
“spiky”’ spectra occur.

4. Radar observations

We used real data in an experiment to study these
various algorithms. For the case of a uniform wind
field and for a radar beam pointing at an angle 8 from
the zenith, with a component of the horizontal wind
in the plane of the radar beam (oriented in the east-
west plane), U, and vertical wind, W, the line of sight
Doppler shift u#, will be:

u, = Usind + W cosé. (6)

If in addition to this, we have a beam pointing in a
direction —#, giving a line of sight velocity u, and a
beam pointed to the zenith to give an estimate of W,
denoted as w, we can then construct a quantity:

ou = u, + u; — 2w cosé @)

where éu should average to zero for a uniform wind
field and the rms value of éu gives us a check on the
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FIG. 5. The observed standard deviation as for Fig. 3, but for
analysis of the matched filter function by least squares fitting.

900(6861)92+0-025 L/1 LESOYE/SET/Z/9/PA-B01e/Y08)/B10 00si8We S[eunol//:dpy woly pepeojumog

T 000 ¢ MOpI® GEZO

020z 8unr 9z uo 3sanb Aq ypd



240 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

errors in the wind measurement. Strauch et al. (1987)
used a similar procedure to investigate the precision of
hourly averages of the wind estimates. Also, u can be
converted into the uncertainty in the estimate of the
horizontal velocity by dividing by sinf to give 6U. Ob-
servations in the north-south plane are denoted by év
and 6V. The theoretical error estimates may be used
in the standard manner to examine how important the
measurement errors are for the wind observations.

We obtained data for this experiment from the MU
radar located at Shigaraki, Japan, operating at 46.5
MHz (see Fukao et al. 1985a,b for a comprehensive
description of the radar). Four radar beams were
pointed 10° from the zenith to the north, east, south
and west and a fifth beam pointed to the zenith. The
analysis techniques chosen were the PP, PPP, and least
squares fitting in the linear and logarithmic domains.
Time series of 128 points were collected in the range
interval from 0 to 19.2 km, but useful results were
obtained from only a minimum range of about 1 km
because of the receiver recovery time. The range res-
olution was 150 m. The power spectra of five concur-
rent observations were averaged giving an effective time
series length of 640 data points. The averaging of spec-
tra is equivalent to taking a single long dataset and
analyzing it assuming the spectral width is not too nar-
row. Thus we can apply the results of the simulations
using the assumed dependence of the statistical er-
rors on VM. The PP and PPP methods were applied
by taking the Fourier transform of the averge power
spectrum. The sampling interval was 0.07 seconds to
give a Nyquist interval of ~ £22 m s~F.

Figure 6 shows an example of a scatter plot of in-
dividual estimates of 6u and dv in a height regime with
good SNR obtained using the PP technique. The cor-
relation between the errors in the N-S plane and
E-W plane occurs because the same vertical velocity
corrections are used in the two measurements. The
plots of the results with the other methods have a sim-
ilar form; the standard deviation of éu and év for four
of the different analysis techniques are given in Table
2. The observations-in the lower range of heights where
the SNR is high, show that the errors incurred with the
different methods were very similar; values of éu and
5v were about 0.29 m s™'. If we apply the theoretical
results we should expect rms fluctuations of only about
0.13 m s™! for typical spectral widths of about 0.7 m
s~!. Thus the observed fluctuations are much larger
than expected. Note that the beams are horizontally
separated by ~1 km at a height of 3 km. Jasperson
(1982) found that the rms wind variability was con-
sistent with a d'/3 law out to separations of about 20
km. Interpolating his results for a separation of 1 km
gives an expected rms fluctuation in the horizontal
wind velocity of 1 m s™! (giving a éu value of ~0.25
m s~'). Jasperson’s experiment was conducted over
relatively flat terrain, and since the MU radar is located
in a mountain range the variability may be greater.
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VELOCITY DIFFERENCE IN COPLANAR BEAMS
HT RANGE = 2.07 - 4.87 KM PP

- F1G. 6. Scatter plots of éu and év from the MU radar
_experiment, with analysis by the PP method.

Differences in the vertical velocity may also contribute
significantly, since cosf is almost unity for the MU
radar measurements. Apparent large variations in the
vertical wind velocity over scales of the order or the
beam separations have been reported (Fukao et al.
1986). These wind variations are sufficient to reconcile
the observed fluctuations with the theoretical expec-
tations. When the LSF in logarithmic coordinates was
used, a large difference was observed between du and
dv, which is not explained. The results in the upper
height range where the SNR was close to 0 dB showed
that the PP method was most susceptible to noise, as
expected. In this case the dominant term contributing
to éu and év is the random statistical errors in the mo-
ment estimation, but the wind variability may also be
a significant factor. As expected from the simulation
results, the LSF in linear coordinates offered the best
results, followed by the PPP when the SNR was poor.

The PPP method applied here used only three values -

of phase. The use of more lags complicates the algo-
rithm in order to avoid the effects of aliasing induced
at the higher lags.

It should be noted that the coniribution of random
errors to du is greater than that to actual wind mea-
surements since the calculation of du requires infor-
mation from three beams, whereas the routine wind
measurements require only two. For estimates of the
horizontal wind (one component) with a vertical ve-
locity correction, the random error will be a factor of
V2 less than the contributions to 5u, and the effect of
spatial variability will also be less by a factor of about
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TABLE 2. Values of éu and év obtained with four different estimation techniques.
PP PPP-3 LSF (linear) LSF (log)
Range 2-5 km 7-10 km 2-5km 7-10 km 2-5 km 7-10 km 2-5 km 7-10 km
Su (ms™) 0.29 0.69 0.30 0.56 0.28 0.48 0.36 0.53
dv(ms™) 0.30 0.70 0.30 0.56 0.27 0.49 0.29 0.57

0.8, assuming the d'/3 law for spatial variability. An
alternative is the adding of two estimates in one plane
but opposite zenith angles (e.g., ~10°) and dividing
by 2 sinf. This removes the mean vertical contribution
and reduces the statistical component by a factor of
( V2 /4) compared with the contributions to éu, but the
effects of spatial variability remain. This has been con-
sidered in more detail by Koscielny and Doviak (1983).
In many of the MST radars, significantly longer ob-
servation periods have been used by averaging several
successive spectra. When the random errors are thus
decreased, the limitation of the small-scale wind vari-
ability will be of the utmost importance.

Another feature to note is the nonzero mean of su
and év in Fig. 6, which indicates mean differences in
the wind vector between the three radar beams. This
is probably due to mountain lee-waves which have been
observed to dominate the vertical wind variability un-
der some conditions (e.g., Ecklund et al. 1982; Nastrom
et al. 1985). However, with only three beams in the
plane there is insufficient information to study the lee
waves in detail. This “mean” spatial variation of about
0.1 m s™! over the beam separation implies uncertain-
ties of about 0.25 m s™' (mean difference 2 sind) in
the estimates of the horizontal winds. Since, in the case
of lee waves, this mean variation is slowly changing,
the errors will be systematic over short time periods.
In the case of highly convective conditions such as
thunderstorms the effects may be even greater, although
in this case they will also be transitory.

5. Conclusions

For data with good SNR, the PP estimator has the
best performance; for noisy data, a least squares fit to
the linear scale power spectrum is better. The PPP also
offers much better performance than the PP at poor
SNR and is equivalent when the SNR is high; thus the
PPP may be a good compromise. A major limitation
on the radar performance will be the small-scale vari-
ability of the wind so that this will mask marginal im-
provements in the analysis techniques when the SNR
is good. Therefore, the geophysical limitation of the
small-scale wind variability means that there is little
gain in going to complicated algorithms (e.g., Sato and
Woodman 1982; Waldteufel 1976) to obtain minimum
variance estimates for many applications. Because the
small-scale wind variability is of some interest, mea-
surements of éu and v may be useful as a measure of

variability when corrected for the statistical errors in
the Doppler shift estimates.
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APPENDIX "

The Relation of the Matched Filter Function
to the Autocorrelation Function

The matched filter analysis involves the construction
of a filter function, the circular convolution of the
power spectrum with itself:

Y
mF) = [ SU-PSe-ndr @b

which has a maximum at twice the frequency of the
maximum of S(f). We wish to show that the Fourier
transform of this is related simply to the autocorrelation
function, which is the Fourier transform of S(f). The
Fourier transform of (A1), M(7), is given by

© /7
M = | [ i | S(-P)S(- f)df]e-ﬂ"FdF.
oo [ =g
(A2)
We now reverse the order of integration to obtain

M(r) = f j S(—f) f_ Z S(f— Fe ™ FdFdf. (A3)

Now consider the inner integral and make the substi-
tution F' = F — f(dF’ = dF); thus the inner integral
becomes

f S(_Fl)e—j21rrF’dFle-j21r-rf = p*(T)e—ﬁvrrf (A4)
using the fact that the Fourier transform of S(f) is
p(7), and thus the Fourier transform of S(—f) is p* (1)
because S(f) is real (by definition ). Substituting (A4)
into (A3) then gives:

7/
M(r) = o) [ S(=prerias
—JN

= p*(7)p* (7). (A5)
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Thus the matched filter function, m(F) is a Fourier
transform pair with the square of the complex conju-
gate of the autocorrelation function of the time series.
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