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Abstract—In order to measure the variance of wind velocity,
which is contributed from turbulence, via radar observations, it
is necessary to remove the unwanted contribution from strong
horizontal velocity components through the finite beam width of
the radar. This effect is referred to as beam broadening. Although
the amount of beam broadening has thus far been calculated
based on the approximating assumption that the pattern of the
beam is rotationally symmetric and has very low sidelobes, we
need to take a more theoretical approach to radar—one that does
not have a simple beam pattern like the Antarctic PANSY radar
(69S, 39E). In this study, we clarify the theoretical relationship
in a very simple form between the turbulence spectrum, which
is directly associated with the variance of turbulence, two-way
beam patterns, and the observed spectrum, using autocorrelation
functions. The theory is thoroughly universal and applicable to
any type of atmospheric radar, such that we can quantitatively
analyze radar observation systems. Further, we propose a “de-
broadening” algorithm based directly on this theory and from
calculations of the general maximum likelihood. We performed
numerical simulations that validate our theory and the algorithm.

Index Terms—Atmospheric radar, MST radar, beam broaden-
ing, de-broadening, turbulence

I. INTRODUCTION

Measuring the variance of the velocity of the atmosphere
σ2
turb, which is proportionally linked to the energy dissipation

rate, is a common role given to mesosphere-stratosphere-
troposphere (MST) radar. However, the spectral width σ2

obs,
which is observable directly with radar, contains not only
the contribution from turbulence itself (σ2

turb) but also some
measurement biases due to the vertical variation of the velocity
(σ2

shear), the temporal variation of the velocity (σ2
time), and

projection components of the mean wind velocity to the off-
center sensitivity of the radar beam (σ2

beam) [1]. Here, σ2
shear,

σ2
time and σ2

beam are commonly referred to as shear, time and
beam broadening, respectively. Therefore, in a symbolic sense,
the observed spectral width σobs is expressed as

σ2
obs = σ2

turb + σ2
beam + σ2

shear + σ2
time + error. (1)

These unwanted components often become much larger than
σ2
turb itself, and as such cannot be ignored.
Among these components, σ2

shear and σ2
time are induced by

the variance of wind velocity in height and time, respectively.
Typically, these components are estimated by tracing the
variation of the mean Doppler shift (spectral mean) along
height and time, respectively, and then removed.

The remaining broadening component, σ2
beam, is caused by

the finite radar beam width, typically up to a few degrees. This
results in variability of the projection angle to the mean wind
velocity vector, giving different Doppler shifts with respect
to the mean wind velocity from one part to another in the
beam. With respect to this effect, a series of comprehensive
studies has been conducted by Hocking [2], [3], [4]. They
assumed that the radar beam is rotationally symmetric, and
that the beam pattern (e.g., the polar gain diagram) is char-
acterized simply by the beam width θbeam with no sidelobes.
Recently, the impact of neglecting the sidelobes in estimating
the strength of the turbulence is evaluated by Sommer and
Chau (2016) [5]. They concluded therein that even the standard
sidelobe level (∼−18 dB) for circular aperture should be taken
into account for evaluating turbulences.

Via considerations on the simplified radar beam model, it
has been the common understanding that the beam broadening
should be expressed as a convolution of “beam broadening”
spectrum which width is proportional to the mean background
wind velocity, and the “true” turbulent spectrum in the fre-
quency domain. Accordingly, it has also been known that this
can be expressed more simply in the “correlation domain” as
a multiplication of the two auto-correlation functions corre-
sponding to the “beam broadening” and “true” spectra [7],
[8], [9], [10].

Following these studies, Van Zandt [6] proposed a varia-
tional technique to estimate σ2

turb by taking advantage of two
different beam widths. However, this technique is also based
on the assumption that the main beam is almost rotationally
symmetric and well defined by its width, and that the sidelobes
are negligible.
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While the most of existing MST and wind profiler radars
have uniform antenna array with approximately circular or
rectangular arrangements, those with a distributed and asym-
metric array complicate the evaluation of turbulence spec-
trum. The Program of the Antarctic Syowa Station (PANSY)
MST/IS Radar is one such example. PANSY radar is the first
MST radar installed at Syowa Station (69.0◦S, 39.6◦E) in
the Antarctic. It has a large phased array consisting of 1045
antennas [11]. This radar has a distributed and asymmetric
antenna arrangement, and consequently a complicated beam
pattern.

This is because we needed to rearrange and spread the
arrangement to avoid heavy snow accumulation due to its
density, after the one we experienced in 2012. The resulting
antenna arrangement and its beam patterns are shown later. For
this reason, we cannot apply simplifications as in the earlier
studies. Alternatively, a versatile and thorough mathematical
approach is needed so as not exclude any radar design.

In what follows, we develop a mathematical theory that
describes how the power spectrum of the radar echoes is
formed with respect to the two-way complex valued beam pat-
tern and the velocity spectrum of the atmospheric turbulence.
We further propose a de-broadening algorithm that is formed
simply using this relationship, namely an inverse calculation
that obtains the true turbulence spectrum given the series of
radar echoes or a power spectrum.

This paper is organized as follows. In Section II, we
develop the mathematical formulation of the radar observation
to derive an expression of the observation function, or, in
other words, the two-way beam pattern. Section III is the
core part of this study in which we develop the mathematical
theory of the radar echo, the turbulence spectrum, and the
observation function (beam pattern). In this section, it is
proven that the autocorrelation of the received echo is merely a
multiplication of the autocorrelations of the turbulence and the
observation function. In Section IV, we propose a numerical
de-broadening algorithm that estimates the true turbulence
spectrum by removing the effect of the beam pattern. In
Section V, we describe numerical simulations that demonstrate
that our theory and algorithm works as we expect. In the final
section, we state some conclusions. Note that we separate
some mathematical descriptions in the Appendices in order
to keep the structure of this paper as simple as possible.

In the following discussion, the words “power spectrum”
and “autocorrelation” often appear. As it is well known, the
two of them are the Fourier transform to each other and have
very similar information. Although we choose a word of the
two which fits more in the context, one would want to replace
it by the other when it is confusing.

II. RADAR OBSERVATION FUNCTION

We first formulate the radar observation system as a function
of space. A basic formulation is detailed for example in
Hocking et al[13]. We consider that the target atmosphere
is three-dimensionally gridded in cubic cells as schematically
depicted in Fig. 1, with dimensions L1 ×L2 ×L3, where L[·]
can be L[·] ≫ λ/2 to reduce computational cost. In order to

u
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Fig. 1. Grid configuration: the cells are arranged such that the first axis
matches the direction of the wind vector.

avoid complexities in description, we use the single dimension
factor L that is L1 = L2 = L3 = L throughout this paper.
This is not an essential restriction in the following theory.

The arrangement of the grid is as follows. We set the first
axis of the grid parallel to the mean wind vector u. We do not
consider the case in which u is completely vertical or 0. The
second axis is set horizontally and perpendicular to u. Finally,
the third axis is set perpendicular to the first two axes.

Let k, l and m be integer indices of the position of cells
along the first, second, and third axes, respectively. The posi-
tions of cells xklm,x(k+1)lm,x(k+2)lm, . . . are consequently
aligned along the mean wind direction. In order to avoid
the complexity of subscripts, when exact three-dimensional
positions are unnecessary, we use an alternative serial index h
like xh instead of k, l and m. Thus, the following operators
are equivalent: ∑

h

=
∑
k

∑
l

∑
m

=
∑
klm

. (2)

Let xi and xj denote the positions of the i- and j-th
antennas, respectively, and let xh(t) be the position of the
h-th target cell at time t. Time t is divided into two parts:
t = tn+T , where slow time tn = nt∆ is the time point of the
n-th pulse transmission where t∆ is the interval; and fast time
T ; 0 < T < t∆, the lapse time after the pulse transmission at
tn.

We first consider a path of the signal transmitted from
antenna i, scattered by target cell h, and then received by
antenna j. Let pi(t) be the transmitted signal, fh(t) the
scattering coefficient at cell h as a function of time, and qj(t)
the receiver filter. Standardly, qj(t) contains a matched filter
and a frequency conversion, and then the signal is sampled
at the fast time T in accordance with the nominal range
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R = cT/2, where c is the speed of light. The sampled signal
corresponding to a nominal range R thus becomes

rhij(tn) =

∫ t∆

0

fh

(
tn + T − |xh − xi|

c

)
pi

(
T − |xh(tn)− xi|+ |xh(tn)− xj |

c

)
qj

(
T − 2R

c

)
dT. (3)

The scattering coefficient function fh(t) varies in time de-
pending on the state of the atmosphere, and it can be treated
as constant during one pulse repetition interval t∆; therefore,
fh(tn + T ) ≃ fh(tn), T ≤ t∆.

Then,

rhij(tn) = fh(tn)

∫ t∆

0

pi (T − Thij(tn)) qj (T − TR) dT,

(4)

where Thij(tn) denotes the time of flight between antennas i
and j via target cell h as a function of slow time tn. That is,

Thij(tn) =
|xh(tn)− xi|+ |xh(tn)− xj |

c
, (5)

and

TR =
2R

c
(6)

is the sampling time corresponding to the nominal range.
The integration in (4), a cross-correlation of pi(t) and qj(t),

consists only of known functions and can be calculated apart
from the received signal. When we define

g′ij(τ) =

∫ t∆

0

pi(T ) qj(T − TR + τ) dT, (7)

we can rewrite (4) as

rhij(tn) = fh(tn) g
′
ij(Thij(tn)). (8)

For simplicity, we define ghij(tn) = g′ij(Thij(tn)), and (8)
becomes

rhij(tn) = fh(tn) ghij(tn). (9)

In the case of monostatic radar with antennas indexed with
i = 1, 2, . . . , Nant, a combined receiver signal in terms of
target cell h is

rh(tn) =fh(tn)

Nant∑
i

Nant∑
j

ghij(tn)

=fh(tn) gh(tn), (10)

where gh(tn) is the sum of ghij(tn) through i and j. Again, in
(10), fh(tn) is the scattering coefficient (usually real valued)
of target cell h, and gh(tn) is the complex beam pattern (i.e.,
the receiver filter form considered) with respect to the target
cell’s position xh(tn).

III. DERIVATION OF AUTOCORRELATION FUNCTION AND
POWER SPECTRUM

In the previous section, we derived a form of the received
signal as a function of the scattering coefficient at gridded
cells of the target atmosphere. We now turn to the derivation
of a form of the power spectrum of the echo from the
received signal. Unlike most radar systems, we exploit the
autocorrelation function (ACF) with which the final result is
given in a simpler form than the one with the power spectrum.
Further, in this section, we treat slow time tn as continuous
t for the sake of simplicity, insofar as doing so does not
significantly alter our conclusions.

Signals received at the antennas are added to a single series
of signal r(t). That is,

r(t) =
∑
h

fh(t) gh(t). (11)

In order to derive the autocorrelation of the signal we place two
assumptions or approximations of the scattering coefficient
functions of the gridded atmosphere cells:

1) Independence: fh(t) ⊥⊥ fh′(t) for h ̸= h′,
2) Spectral equality: E|Ft[fh(t)]|2 = E|Ft[fh′(t)]|2,

where the operators ⊥⊥, E, and Ft denote independence, the
ensemble expectation, and the Fourier transform with respect
to time t, respectively. Assumptions 1 and 2 mean that the
scattering coefficient functions are independent at one cell to
another as a time series with the same power spectrum. As a
corollary of Assumption 2, with respect to the autocorrelation
functions, the equality Fh(τ) = Fh′(τ) = F (τ) is also true
for any h and h′, where Fh(τ) is the autocorrelation function
of fh(t). The unsubscripted F (τ) is the common expression
for all cells.

The autocorrelation function of the received signal r(t) is
mathematically defined by an integration of a signal of infinite
time:

R∞(τ) =

∫
r∗(t) r(t+ τ) dt (12)

where ∗ operator denotes complex conjugation. Obviously, we
need to consider finite time observations in practice. From the
mathematical point of view, however, an autocorrelation with
a finite time integration is subject to statistical fluctuations.
To bridge the gap between the theoretical autocorrelation and
the practical observations, we first consider an ensemble of
an infinite number of segmented time observations in order
to obtain a mathematical expression of autocorrelation that
statistically converges.

Let rζ(t) be the observed signal with respect to the integer
index of the ensemble experiment ζ. Then, an ensemble
averaged autocorrelation function is

R(τ) = E

∫
{rζ(t)w(t) }∗{rζ(t+ τ)w(t+ τ)}dt (13)

where w(t) is a rectangular window function for taking into
account the time duration D. That is, as also shown in Fig. 2,

w(t) =

{
1 −D/2 < t ≤ D/2
0 otherwise

. (14)
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Fig. 2. Rectangular window function w(t) and its autocorrelation function
W (τ) are plotted.

Substituting (11) in (13), we obtain

R(τ) = E

∫ {∑
h

f∗
hζ(t) g

∗
h(t)w

∗(t)
}

{∑
h′

fh′ζ(t+ τ) gh′(t+ τ)w(t+ τ)
}
dt (15)

= E

∫ ∑
h

∑
h′

f∗
hζ(t) fh′ζ(t+ τ)

g∗h(t) gh′(t+ τ) w∗(t)w(t+ τ) dt (16)

=

∫ ∑
h

∑
h′

E
[
f∗
hζ(t) fh′ζ(t+ τ)

]
g∗h(t) gh′(t+ τ) w∗(t)w(t+ τ) dt. (17)

In (17), the expectation operator is applied only to the
bracket that contains f∗

hζ(t) fh′ζ(t + τ), because this part
is the only stochastic signal, whereas the other parts are
deterministic. When h ̸= h′, E[f∗

hζ(t) fh′ζ(t+τ)] = 0 because
f∗
hζ(t) ⊥⊥ fh′ζ(t+τ) for any h ̸= h′ according to Assumption

1. Then, E
[
f∗
hζ(t) fhζ(t+τ)

]
(i.e., the case of h = h′) should

be independent from t, because of stationarity, and from h,
because of Assumption 2. Accepting the ergodic hypothesis,
we can replace the expectation with a temporal integration:
we thus obtain

E
[
f∗
hζ(t) fhζ(t+ τ)

]
=

∫
f∗
hζ(t) fhζ(t+ τ) dt (18)

= F (τ), (19)

where F (τ) is the unique autocorrelation function common to
all the cell indices h and experiment indices ζ. Thus,

E
[
f∗
hζ(t) fh′ζ(t+ τ)

]
=

{
F (τ) h = h′

0 h ̸= h′ . (20)

Substituting (20) in (17), we obtain

R(τ) =

∫ ∑
h

F (τ) g∗h(t) gh(t+ τ) w∗(t)w(t+ τ) dt

(21)

= F (τ)

∫ ∑
h

[
g∗h(t) gh(t+ τ)

]
w∗(t)w(t+ τ) dt

(22)

u

axis 1

axis 2

axis 3

Fig. 3. Schematic illustration of the cells. In order to derive the function
F (τ), every string of cells along Axis 1 is regarded as a discrete time series
with increments at every L/|u|.

In (22), the summation operator is applied only to
g∗h(t) gh(t + τ), because this is the only term dependent on
h that remains in the integrand. We now expand the serial
index h to a set of three-dimensional indices k, l, and m, as
explained in Section 2. Then, the summation becomes∑

h

g∗h(t) gh(t+ τ) (23)

=
∑
m

∑
l

∑
k

g∗klm(t) gklm(t+ τ) (24)

=
∑
m

∑
l

[ ∑
k

g∗lm

(
t+

kL

|u|

)
glm

(
t+

kL

|u|
+ τ

)]
,

(25)

where g∗lm(t+ kt∆) is a one-dimensional section of the com-
plex beam function along the mean wind direction u shown
in Fig. 3, sampled at time interval kL/|u| corresponding to
grid interval L.

When we look at the summation in terms of k in (25),∑
k g∗lm(t+kL/|u|) glm(t+kL/|u|+τ), it takes the form of

an autocorrelation function having a summation with respect
to k instead of in integration by t. Assuming g∗lm(t) are smooth
functions and the sampling interval kL/|u| corresponding to
the spatial interval L is sufficiently dense, we define

Glm(τ) =
∑
k

g∗lm

(
t+

kL

|u|

)
glm

(
t+

kL

|u|
+ τ

)
, (26)

where Glm(τ) is the autocorrelation function of glm(t).
We now define G(τ) as the sum of all autocorrelation

functions Glm(τ) of the complex beam functions glm(t)
indexed with l and m, which is,

G(τ) =
∑
m

∑
l

Glm(τ) =
∑
h

g∗h(t) gh(t+ τ). (27)
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In function G(τ), time lag τ has a relationship to the spatial
distance along x-axis via the velocity of the wind u. Specif-
ically, τ = ξ/|u| where ξ is the spatial lag along x-axis, and
thus

G(τ) = G(ξ/|u|). (28)

Substituting (27) into (22), we obtain

R(τ) = F (τ)

∫
G(τ)w∗(t)w(t+ τ) dt (29)

= F (τ) G(τ)

∫
w∗(t)w(t+ τ) dt. (30)

The remaining integration is simply the autocorrelation func-
tion of the window function. Therefore, (30) can be rewritten
as

R(τ) = F (τ) G(τ) W (τ). (31)

The final form of R(τ) in (31) states a remarkable re-
lationship between the four autocorrelation functions. Note
that the result is not trivial, because, in general, Rdd(τ) =
Raa(τ)Rbb(τ)Rcc(τ) does not hold where Rdd(τ) is the
autocorrelation function of d(t) = a(t) b(t) c(t), and the other
R··(τ) are similarly defined, given that a(t), b(t), and c(t) are
arbitrary functions.

IV. ALGORITHM TO ESTIMATE F (τ)

In this section we derive a practical algorithm to estimate
the spectrum of f(t) from the observed spectrum of r(t),
based on the relationship described in (31). In order to develop
the numerical algorithms, we employ the following discrete
expressions:

r[n] =
∑
h

fh[n] gh[n] (32)

and

R[ν] = F [ν] G[ν] W [ν], (33)

instead of

r(t) =
∑
h

fh(t) gh(t) (34)

and

R(τ) = F (τ) G(τ) W (τ), (35)

where n denotes the integer index of slow time tn = n t∆,
and ν denotes the integer index of the time lags τ .

In addition, we assume that the observed spectrum is given
in the form of an averaged periodogram (also known as the
Bartlett method) that is defined by the sum of the absolute
square of the discrete Fourier transform (DFT) of the received
signals. That is,

R[κ] =

Nens−1∑
ζ=0

∣∣∣Ndft−1∑
n=0

r[nζ + n] exp
(
j2πκ

n

Ndft

)∣∣∣2 (36)

where κ is the integer index for the discrete frequency, Ndft

is the length of the signal segment for the DFT, and Nens is
the number of ensemble averaging, or incoherent averaging.

The offset index nζ is selected such that the signal segments
do not overlap in different DFT segments with the Bartlett
method. That is,

nζ = ζ Ndft. (37)

We now want to solve (33) with respect to F [ν] given R[ν],
G[ν] and W [ν]. One simple way to do so is to calculate
R[ν]/(G[ν]W [ν]), but this solution is too sensitive to noise
contained in R[ν] and does not usually provide a satisfactory
result. Instead, we apply a simple parametric inversion method.

The most widely accepted parametric spectrum model for
atmospheric echo is the four-parameter Gaussian model (e.g.,
[12], see also Appendix B). Accepting a Gaussian spectral
model, we are able to apply a Gaussian temporal autocorrela-
tion model as well. The four-parameter Gaussian autocorrela-
tion model is defined as

F [ν] = A

√
2πσ

N
exp

[
− 2π2σ2ν2

N2
+ j

2πνµ

N

]
+ Pn δ[ν],

(38)

where A, σ, µ, and Pn are the amplitude, spectral width,
spectral mean, and noise level, respectively. δ[ν] is the discrete
delta function, which is δ[0] = 1 and δ[ν] = 0 ∀ ν ̸= 0.

Once we obtain G[ν], given a wind velocity vector u, we
can calculate a theoretical R[ν] according to (33). By applying
the DFT to R[ν] following (41) in Appendix A, we obtain a
theoretical spectrum curve R[κ]. Let Robs[κ] be a spectrum
calculated by (41) or (46) from observed data. By comparing
R[κ] and Robs[κ], we can evaluate how close the theoretical
spectrum is to the one observed. One of the most popular
ways of evaluating the goodness of fit of R[κ] is the least
mean squared (LMS) method in which the squared sum of
the residue between the two is evaluated. Another evaluation
method is maximum likelihood (ML), which pursues the
maximization of the likelihood of the spectral points R[κ] in
terms of Robs[κ], instead of minimizing the residue (e.g. [14]).
In this study, we employ the ML method.

An example of an algorithm that estimates the optimal
parameters Â, σ̂ν , µ̂, and P̂n, and the corresponding spectrum
R[κ], given Robs[κ], is summarized as follows.

Algorithm:
1) Initialize A, σν , µ, and Pn,
2) Calculate the initial R[κ],
3) Calculate the initial likelihood,
4) Modify A, σν , µ, and Pn,
5) Calculate R[κ],
6) Calculate the likelihood,
7) Return to Step 4 unless the likelihood reaches the

maximum.
Since analytic expressions of the derivatives of the likeli-

hood are difficult to obtain, optimization methods that do not
require the gradient vector should be applied.

V. NUMERICAL SIMULATIONS

A. General Characteristics

In order to validate and evaluate the algorithm we derived
in the previous sections, we conducted simple numerical
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Fig. 4. Antenna array of PANSY radar, in January 2017. The small hexagons
filled with blue show the positions of the antennas, where the larger hexagons
circumscribing 19 of them each indicate independent subarrays.

simulations. Our simulation was based on the PANSY radar
hardware with an operational frequency f0 = 47 MHz. The
antenna arrangement is shown in Fig. 4.

The forward calculation model of the simulations to obtain
Robs[κ] was based on the grid model shown in Fig.1. Therein,
the grid size was set to L = 30 m. Mean wind velocity was
set to |u| = 46.0 ms−1, with 6 different azimuth angles 0,
60, ..., and 300. The beam direction was set to the zenith.
The envelope of the transmitted pulse was shaped to the
Gaussian with the full width at half maximum (FWHM) of
1µs. Consequently, the range resolution was 150 m. The
nominal range (height) was R = 6000 m.

Figure 5 shows 2D (horizontal) and 1D sections of complex
beam patterns in Rows (a) and (b), G(τ) in Row (c), and its
Fourier transform in Row (d). Therein, Row (a) shows the
horizontal section of the complex beam pattern at a height
of 6000 m rotated by the angle designated to each column
such that the x-axis agrees with the direction of u. The pairs
of Columns 1 and 4, 2 and 5, and 3 and 6 have opposite
wind direction. The x-sections of the beam and their RMS
envelopes are exhibited in Row (b). These plots are clipped
within the range x ∈ [−400, 400] m for visual presentation;
the calculations were done at a wider range. Row (c) shows
the complex ACFs G′(ξ) as a function of spatial lag ξ instead
of G(τ). They are related as G′(ξ) = G(ξ/|u|) = G(τ).
One notable characteristic the ACFs show is that echoes lose
their correlation when the target moves by ∼200 m, regardless
of how the original beam pattern spreads in space. Another
characteristic is that the ACFs have some phase rotation even
when the wind is horizontal while the beam is vertical. This
is due to the asymmetric arrangement of the array.

Row (d) shows the Fourier transforms of the ACFs G(τ)
plotted in Row (c) as functions of frequency in arbitrary

TABLE I
PARAMETERS FOR NUMERICAL SIMULATION

Model Parameter Symbol Value Unit
Frequency f0 47.0 MHz
Half wavelength c/2f0 3.189 m
Wind velocity |u| 46.0 ms−1

Sampling interval (in time) t∆ 128 ms
No. of samples in one DFT Ndft 128
Length of one DFT segment t∆Ndft 16.384 s
No. of incoherent integrations Nens 7
Interval in frequency f∆ = 1/t∆Ndft 0.061 Hz
Interval in velocity c/2f0t∆Ndft 0.195 ms−1

Spectral amplitude A 10.0
Spectral mean µ 0.0
Spectral width σ 1.0
Spectral noise floor Pn 1.0

units (or 1/distance) to illustrate their difference in shape. We
refer to this function as the broadening spectrum. The pairs
with opposite wind direction show the symmetric appearance
with respect to zero in frequency corresponding to the phase
rotation in their ACFs. This means that the final Doppler
spectra have different frequency offsets depending on the wind
direction, even if the beam is vertical to the horizontal wind.

B. Estimating Doppler Spectra

The parameters to simulate “observed” spectra Robs[κ] are
summarized in Table I.

Employing the estimation algorithm derived, we obtained
Robs[κ] given the Gaussian spectral parameters A = 10, µ =
0, σ = 1, and Pn = 1. µ and σ are in normalized by the
frequency interval, such that σ = 1 corresponds to f∆ in Hz.

In order to demonstrate the performance of our proposed
algorithm, we employed the LMS method (without the de-
broadening algorithm) as a conventional technique for com-
parison. The resulting estimates via our proposed and the
conventional algorithms are shown in Fig. 6. With respect
to mean Doppler shift µ (Fig. 6(a)), the estimates via our
proposed algorithm (blue) shows a very good agreement with
the given truth (µ = 0.0) with RMS error of 0.011 (∼2 mm/s),
while the result from the conventional technique (red) gives
0.160 (∼31 mm/s). With respect to spectral width σ (Fig. 6(b)),
our proposed algorithm (blue) shows a very good agreement
with the given truth (µ = 0.0) with RMS error of 0.023
(∼4 mm/s), while the result from the conventional technique
(red) gives 0.734 (∼143 mm/s).

VI. DISCUSSION

We chose the PANSY radar as an instance to which the
proposed beam debroadening technique was applied because
the radar has a uneven and asymmetric antenna arrangement,
and consequently a complicated beam pattern that makes it
hard to evaluate the beam broadening effect. As the PANSY
radar has quite a large aperture of about 450 λ2, however, the
resulting broadening effect was rather small although detailed
quantitative discussions about the absolute significance of the
broadening effect in relation with aperture size and antenna
arrangement are out of the scope of this paper. Note that,
however in general, a radar with smaller aperture has a larger
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Fig. 5. Complex beam patterns (horizontal section), G(τ) and F [G(τ)], at height z=6000 m, calculated with respect to PANSY radar, are plotted. Columns
1–6 are associated with an azimuthal rotation angle of 0◦, 60◦, 120◦, · · · , 300◦, respectively. Rows: (a) Complex beam patterns (horizontal section) plotted
with a 2D color code indicating phase by hue (cyclic color) and power in dB by intensity. When the rotation angle is 0◦, the x-axis agrees with the physical
x-axis. (b) Sections of the complex beam patterns plotted in Row (a). Thin colored lines show the x-sections at different y intercepts. Thick black lines show
their RMS envelopes. (c) Sum of ACFs of the sections of the complex beam pattern, G(τ) in the text, but plotted as functions of the distance in meter unit
along the x-axis. Blue and red lines indicate the real and imaginary parts, respectively. (d) The Fourier transforms of the G(τ) shown in Row (c), F [G(τ)]
are plotted as functions of wavenumber (1/m). The wavenumber can be converted to velocity simply by multiplying |u|.

broadening effect. In a recent study by Kohma et al.[15]
shows that turbulent spectrum variance of around 100 mm/s
has a significant meaning in discussing the energy dissipation
rate. In addition, in the context of global circulation, a subtle
background velocity as small as 10 mm/s can be significant.
In such cases, our proposed method plays a more significant
role.

Further, we would like to discuss about the practical spectral
width and frequency resolution. With large aperture VHF
atmospheric radars, the typical time resolution is about 1
min. Using the Blackman-Tukey method, for example, the
frequency resolution can be consequently as small as 1/60 Hz,
which corresponds to 0.05 m/s at the radar frequency of 47
MHz. From the point of view of historically accumulated data,
to which the Bartlett or similar method had been applied due
to the limitation in computational cost, the time resolution
had been about several seconds to ten, which corresponds to
around 0.3 m/s. In this paper, we showed that our proposed
method works well even in such a case that the frequency
resolution in data is not well defined. In case that one would
like to begin an observation accompanied with our proposed
analysis technique, it is recommended to define a higher
frequency resolution.

We also would like to place some technical notes with

respect to implementation of the proposed algorithm. Calcu-
lating G(τ) as a function of u = (u, v, w), which is a 3-
dimensional parameter, as well as beam direction and height, is
slightly computationally heavy. In a practical implementation,
G(τ) can be well approximated by first calculating Ghor(ξ)
corresponding only to the horizontal part of the wind direction,
second streching it to obtain Ghor(τ) with the horizontal wind
velocity (u, v), and finally applying uniform phase rotation
correspondingly to w to obtain G(τ). With this method, we
can reduce the data set of functions G(τ).

VII. CONCLUSIONS

We proposed a de-broadening algorithm that estimates the
turbulence spectrum width from the observed spectral width.
By carefully examining the radar observation model from a
statistical point of view, we derived the elegant relationship
between the observation function (complex two-way radar
beam pattern), statistical properties of the turbulence, and
the length of the temporal window in the domain of the
autocorrelation function shown in (31). Based on the derived
relationship, we constructed the de-broadening algorithm using
generic iterative numerical inversion techniques. Although
the algorithm was intended for de-broadening the width of
observed spectra, our numerical simulation showed that the
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Fig. 6. Estimates of (a) mean Doppler shift µ and (b) spectral width σ
resulting from the simulations. In each panel, the red and blue curves denote
the conventional LMS estimates (without de-broadening) and our proposed
de-broadening algorithm, respectively.

algorithm also resolves biases in the mean Doppler shift that
arise when the array is not symmetric. In this paper, we
employed a four-parameter model as the turbulence spectrum.
However, the technique is not restricted to this model and can
be enhanced to a non-parametric method when sufficient data
is provided. Our proposed technique is already used in the
recent work [15].

APPENDIX A: DERIVATION OF BARTLETT PERIODOGRAM
VIA AUTOCORRELATION FUNCTIONS

We briefly show the equality of the averaged periodograms
(the Bartlett method) and the Fourier transform of autocorre-
lation functions similar to the Blackman–Tukey method.

Bartlett Spectrum via Autocorrelation Function: Let Rζ [ν]
be the autocorrelation function of the ζ-th segment of a
received signal rζ [n]. That is,

Rζ [ν] =


N−ν−1∑
n=0

r∗ζ [n] rζ [n+ ν] for ν ≥ 0

N−1∑
n=−ν

r∗ζ [n] rζ [n+ ν] for ν < 0

. (39)

The DFT of Rζ [ν] becomes

R[κ] =
∑
ζ

N−1∑
ν=1−N

Rζ [ν] exp
(
j2π

νκ

N

)
(40)

=
∑
ζ

N−1∑
ν=0

(
Rζ [ν] +Rζ [ν −N ]

)
exp

(
j2π

νκ

N

)
, (41)

where the second equation is obtained because

exp
[
j2π

(ν ±N)κ

N

]
= exp

(
j2π

νκ

N

)
∀ν. (42)

Note that the divisor in the exponential function of the “DFT”
is N and it does not agree with the length of the non-zero part
of Rζ [ν], which is 2N − 1. This is because the independent
degrees of freedom of Rζ [ν] are N and this does not cause
any loss of information. If one applies the ordinary 2N -point
DFT to Rζ [ν], −N ≤ ν ≤ N − 1, where Rζ [−N ] = 0,
the points R[κ] for κ =odd in the resulting spectrum can be
calculated from the rest of the points R[κ] for κ =even just
by interpolating.

Bartlett method:

R[κ] =
∑
ζ

∣∣∣N−1∑
n=0

rζ [n] exp
(
j2π

nκ

N

)∣∣∣2 (43)

=
∑
ζ

{N−1∑
n=0

rζ [n] exp
(
j2π

nκ

N

)}∗

{N−1∑
n′=0

rζ [n
′] exp

(
j2π

n′κ

N

)}
(44)

=
∑
ζ

{N−1∑
n=0

N−1∑
n′=0

r∗ζ [n] rζ [n
′] exp

(
j2π

(n′ − n)κ

N

)}
(45)

=
∑
ζ

{N−1∑
n=0

N−n−1∑
ν=−n

r∗ζ [n] rζ [n+ ν] exp
(
j2π

νκ

N

)}
,

(46)

and by exchanging the order of summation with respect to n
and ν in (46), we obtain (41).

APPENDIX B: FOURIER TRANSFORM OF GAUSSIAN
FUNCTIONS

Let ν and κ be integer temporal and frequency variables,
respectively, ranging from [−N/2, N/2− 1] for even N . The
four-parameter Gaussian spectral model can be defined as

R[κ] = A exp
[
− (κ− µ)2

2σ2

]
+ Pn, (47)

where A, σ, µ, and Pn are the amplitude, spectral width,
spectral moment, and noise level, respectively. Then, the
corresponding autocorrelation function becomes

F [ν] = A

√
2πσ

N
exp

[
− 2π2σ2ν2

N2
+ j

2πνµ

N

]
+ Pn δ[ν],

(48)

where δ[ν] is the discrete delta function, which is δ[0] = 1,
and δ[ν] = 0 ∀ ν ̸= 0. These two functions form a DFT pair:

R[κ] ⇔ F [ν]. (49)

Unlike cases with an (analytic) Fourier transform, however,
this expression can hold only when the parameters are set
within a fair range, because this expression is a simple analog
of a Fourier transform, in which the sampling theory and the
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variable ranges are not considered. A practical fair range is,
for example,

−N

2
≲ µ± 3σ ≲ N

2
. (50)
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[13] W. K. Hocking, J. Röttger, R. D. Palmer, T. Sato, and P. B. Chilson,
Atmospheric radar : application and science of MST radars in the Earth’s
mesosphere, stratosphere, troposphere, and weakly ionized regions, Cam-
bridge University Press, 2016.

[14] J. Rice, On the Estimation of the Parameters of a Power Spectrum, J.
Multivar. Anal., 9, pp. 378–392, 1979.

[15] M. Kohma, K. Sato, Y. Tomikawa, K. Nishimura, and T. Sato, Esti-
mate of Turbulent Energy Dissipation Rate From the VHF Radar and
Radiosonde Observation in the Antarctic, J. Geophys. Res.: Atmosphere,
124, 2976–2993, doi:10.1029/2018JD029521, 2019.


