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Abstract: Quantitative ultrasound techniques for assessment of bone quality have been attracting
significant research attention. The axial transmission technique, which involves analysis of ultrasonic
guided waves propagating along cortical bone, has been proposed for assessment of cortical
bone quality. Because the frequency-dependent wavenumbers reflect the elastic parameters of
the medium, high-resolution estimation of the wavenumbers is required at each frequency with low
computational cost. We use an adaptive array signal processing method and propose a technique
that can be used to estimate the numbers of propagation modes that exist at each frequency without
the need for time-consuming calculations. An experimental study of 4-mm-thick copper and
bone-mimicking plates showed that the proposed method estimated the wavenumbers accurately
with estimation errors of less than 4% and a calculation time of less than 0.5 s when using a
laptop computer.

Keywords: signal processing; ultrasonic guided waves; axial transmission

1. Introduction

The first quantitative ultrasound (QUS) technique for use in bone assessment was proposed by
Langton et al. [1] in the 1980s. Since then, a number of different QUS techniques have been proposed
and developed [2–4]. QUS techniques were developed for early osteoporosis detection and fracture risk
evaluation screening applications. When compared with X-rays, QUS offers several advantages: it is a
noninvasive process and can be performed using portable and low-cost equipment. Techniques that
can evaluate the quality of cortical long bone structures have recently attracted significant research
attention [2,3,5–8]. In this study, we have developed cortical long bone quality evaluation methods
using the axial transmission (AT) technique [9–13].

A number of recent studies have used the AT technique, in which wide-band signals are emitted and
the ultrasonic guided wave that propagates along the cortical bone is then analyzed. The cortical bone
has previously been described as a transversely isotropic absorbing plate with finite thickness [14–18].
The ultrasonic guided wave that propagates in cortical bone consists of multiple propagation modes, and
the frequency-dependent wavenumbers of these modes represent the elastic properties of the medium.
Many techniques for frequency-wavenumber ( f –k) analysis have therefore been proposed and reported.
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Tran et al. proposed the Radon transform method, which estimates the phase velocity (cp) at
each frequency [12]. The phase velocity is given by cp = 2π f /k, and the basic premises of the
f –k and f –cp analysis methods are theoretically the same. The Radon transform method uses a
single transmitter with multiple receivers, estimates the phase velocity using an iterative process,
and produces high-resolution estimates. However, the computational cost of this method is not low
because it requires inversion of a large-scale matrix. Sasso et al. [19] proposed a singular value
decomposition (SVD)-based method and used a probe composed of multiple transmitters and emitters
to analyze the guided waves. Minonzio et al. extended this method and produced accurate depictions
of the phase velocities of the plate [10]. Use of SVD allows the method to detect the modes with
low intensity. The method was effective for estimation of the elastic properties of the medium [20].
However, the measurement resolution is determined by the aperture size, and it is necessary to
estimate the number of propagation modes in the received signal. Xu et al. proposed the sparse SVD
(S-SVD) method, which combines the Radon transform method proposed by Tran et al. with the SVD
method [21]. The resulting method acquires super-resolution estimates using a combination of SVD
and an iterative process. However, this method also requires estimation of the number of propagation
modes in the received signal and multiple calculations for inversion of a large matrix.

We recently developed an adaptive beamforming technique [22]. We used the estimation of signal
parameters via rotational invariance technique (ESPRIT) algorithm. This algorithm uses eigenvalue
decomposition to separate the desired signal from noise. The ESPRIT algorithm also requires estimation
of the number of propagation modes and the conventional method includes an iterative process with
eigenvalue decomposition [22]. Because the matrix inversion and eigenvalue decomposition processes
incur large computational costs, reduction of these computational costs would be useful for practical
applications. Therefore, in this study, we propose a method that estimates the number of propagation
modes with a low computational cost.

The number of propagation modes in the received signal, which is denoted by M in this study,
is usually estimated using a thresholding process. However, the eigenvalues that correspond to the
signal are not equivalent to the signal intensities. Therefore, it is not easy to determine M when using a
thresholding process that only uses the intensities of the eigenvalues or singular values. Therefore, in this
study, we propose a new algorithm to estimate M using information theoretic criteria. This estimation
procedure would be effective for both the SVD and ESPRIT methods. While many studies on estimation of
M have been reported [23–27], the resulting methods were not applied to the analysis of ultrasonic guided
waves when propagating along a transversely isotropic absorbing material such as cortical bone.

In the proposed method, we do not use an iterative process with high computational cost, such as
the eigenvalue decomposition or matrix inversion methods, but use a diagonal loading (DL) technique
that adds the diagonal loading matrix to the covariance matrix to determine M. We compare the
computational cost of the proposed method with that of a conventional method and demonstrate
the effectiveness of the proposed method via simple numerical simulations and experiments using a
copper plate and a bone-mimicking plate.

2. Materials and Methods

2.1. System Model

In this study, we considered the system model that is shown in Figure 1. We placed a linear
array probe on top of a free isotropic or transversely isotropic plate and analyzed the guided waves
that propagate along the plate. When we consider multiple propagation signals with multiple phase
velocities and ignore changes in amplitude, the received signals are given by

Sn(ω) = S1(ω)
M(ω)

∑
m=1

exp{−(n− 1)km(ω)x} (1)
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where Sn(ω) is the received signal at the n-th receiver in the frequency domain with an angular
frequency ω and x is the receiving array pitch. km is the wavenumber of the m-th propagation mode,
which is given by km = ω/cm, where cm is the phase velocity of the m-th mode. Note that M is
dependent on the frequency.

Transmitter Receivers

SpecimenThickness

Linear array probe

Figure 1. System model used in this study. In this study, we used a 4-mm-thick copper (homogeneous
isotropic) plate and a 4-mm-thick bone mimicking (transversely isotropic) plate.

2.2. Wavenumber Estimation Using the ESPRIT Algorithm

To realize super-resolution estimates, we used the ESPRIT algorithm. The basis of this algorithm
is briefly explained here. When there is a single propagating wave, i.e., M = 1 in Equation (1), we can
then estimate the wavenumber by comparing the signals that are received at two receivers.

k1(ω) = 6 {Sn(ω)S∗n+1(ω)}/x (2)

where 6 represents the angle of the complex signal.
As shown in Equation (2), the wavenumber is estimated directly without performing a peak

search process. However, when M > 1, we cannot estimate the wavenumber by simply comparing
the phases of the two received signals alone. The ESPRIT algorithm estimates the wavenumbers of
multiple modes via an eigenvalue decomposition of the covariance matrix to enable the separation of
multiple signals.

The covariance matrix represents a correlation between the signals at each receiver. To estimate the
covariance matrix, we use the sub-array averaging technique [28]. In the sub-array averaging technique,
multiple sub-arrays are situated into the full-size array. Here, we define the signal matrix as follows:

A(ω) =

 S1,1(ω) · · · SN,1(ω)
...

. . .
...

S1,Nsub(ω) · · · SN,Nsub(ω)

 (3)

where Si,j is the received signal at the j-th receiver in the i-th sub-array, N is the number of sub-arrays
contained within the whole array, Nsub is the number of receivers included within a single sub-array,
i.e., the number of whole receivers is NR = N + Nsub− 1, and A is the signal matrix with size Nsub×N.

The covariance matrix, R, is then given by

R(ω) = A(ω)AH(ω) (4)

=
N

∑
i=1

Ri(ω) (5)

=
N

∑
i=1

Si(ω)SH
i (ω) (6)
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where Si(ω) = [Si,1(ω), · · · , Si,Nsub
(ω)]T is the signal vector at the i-th sub-array and T and H denote

transpose and hermitian transpose of a matrix, respectively. As shown in Equations (5) and (6),
the covariance matrix can be estimated by averaging the covariance matrices of the sub-arrays.
Note that it is necessary to estimate M to enable estimation of the wavenumber.

The theoretical characteristics of the eigenvalues are expressed as follows:

l1(ω) ≥ · · · ≥ lM(ω)(ω) ≥ lM(ω)+1(ω) = · · · = lNsub(ω) = σ2
n (7)

where li(ω) is i-th eigenvalue and σ2
n is the noise intensity. Note that the absolute values of these

eigenvalues do not match the signal intensity directly, i.e., when two waves have the same intensity,
the eigenvalues that correspond to these signals do not have the same value. Therefore, the simple
thresholding process is not suitable for accurate estimation of the number of signals.

In this section, we calculate the covariance matrix and apply the eigenvalue decomposition technique.
When we apply SVD to the signal matrix, A, we theoretically obtain the same result as that obtained
when using N transmitters and Nsub receivers with the SVD technique.

2.3. Estimation of the Number of Signals

2.3.1. Overview of the Basic Theory

In this section, we propose an estimation technique for M(ω). A method to estimate M(ω)

that uses information theoretic criteria called the minimum description length (MDL) principle has
previously been reported [23,24]. The evaluation index G(m) that is used to estimate M is given by

G(m) = − log

∏Nsub
i=m+1 li(ω)

1
Nsub −m

∑Nsub
i=m+1

li(ω)
Nsub−m


(Nsub−m)N

+
1
2

m(2Nsub −m) log N (8)

where G(m) is the index, and the value of m that minimizes G(m) represents the estimated M(ω).
Here we define the estimated M(ω) as M′(ω).

2.3.2. Diagonal Loading Technique

In Equation (8), the numerator and the denominator represent the geometric and arithmetic
means of the eigenvalues, respectively. Smaller eigenvalues therefore make the estimates unstable.
To stabilize the estimation procedure, we thus use a diagonal loading technique that adds a diagonal
matrix to the covariance matrix [25–27].

The DL process is expressed as follows:

R′(ω) = R(ω) + η(ω)I (9)

where η is a diagonal loading factor and I is the identity matrix. The process that was shown in the
previous equation can then be rewritten as follows:

l′i(ω) = li(ω) + η(ω) (10)

where l′i(ω) is the i-th eigenvalue that is calculated from R′(ω). Therefore, even when a different
DL factor is used with the same covariance matrix, we do not need to perform the eigenvalue
decomposition process again. In other words, we use the DL technique to estimate M as an offset
value and do not add the DL matrix to the covariance matrix directly. By replacing li in Equation (8)
with l′i , we can then obtain the modified estimates.
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2.3.3. Determination of the DL Factor

Selection of the DL factor is an important aspect of the estimation of M. In this study, we used
two DL factors that were dependent on the received signal intensity. A schematic illustration of these
two factors is shown in Figure 2.

Constant DL
Proposed DL

Frequency dependent DL

Frequency

Int
en

sit
y

Signal Intensity

Figure 2. Proposed diagonal loading (DL) technique.

The DL factor is given by
η(ω) = η1(ω)δ1(ω) + η2δ2 (11)

δ1(ω) = tr{R(ω)} (12)

δ2 =
1

ω2 −ω1

∫ ω2

ω1

tr{R(ω)}dω (13)

where η1 and η2 are the two component DL factors. η2δ2 is used for stabilization and is called
the constant DL in Figure 2 because, at low signal intensities, η1(ω)δ1(ω), which is called the
frequency-dependent DL in Figure 2, approaches zero, and the estimates would thus be unstable.

To determine η1(ω) for the wavenumber estimation procedure, we assumed that the optimal
η1(ω) is common within a specific frequency range. This assumption was made because, as mentioned
below, M′ shows a step-like change with respect to η1. The optimal η1 that gives the optimum M value
has a range and is not a critical value.

We vary η1(ω) and select the minimum value of η1 that gives M′(ω) such that it satisfies the
following condition:

max{M′(ω)} < Mth, with (ω−ωw ≤ ω ≤ ω + ωw) (14)

where ωw is the width of the frequency window that is used for stable estimation and Mth is a threshold
M value that is sufficiently large for wavenumber estimation.

2.4. Experimental Setup

The setup of the experimental study is the same as the system model shown at Figure 1, but we used
a 128-element linear array probe with an element pitch of 0.375 mm that was manufactured by Japan Probe
(Kanagawa, Japan). We selected a single transmitter and 28 receivers (NR = 28) with an element pitch of
0.75 mm. The distance between the transmitter and the first receiver was 18.75 mm. The center frequency
of the transmitted wave was 1.0 MHz. We used two test specimens: (1) a 4-mm-thick copper plate (with
a shear wave velocity of 2260 m/s and a longitudinal wave velocity of 4650 m/s) and (2) a 4-mm-thick
transversely isotropic bone-mimicking plate (Sawbones, Vashon, WA, USA). The elastic parameters of
the bone-mimicking plate have been determined in previous studies [20,21]. The density, shear wave
velocity, longitudinal wave velocity along fibers, and longitudinal wave velocity orthogonal to the
fibers are 1.64 g·cm−3, 1620 m/s, 3570 m/s, and 2910 m/s, respectively [20,21]. We put the probe
parallel to the fibers.
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In the proposed method, we set Mth = Nsub − 1, ωw = 0.5 MHz, η2 = −40 dB, and Nsub = 15.
We used ω1 = 4.9 MHz and ω2 = 5.5 MHz to select a frequency range that should include only noise.

We prepared the DL factor using values of η1 within the −100 dB to 0 dB range at intervals of
10 dB. Mth = Nsub − 1 represents the maximum value of M when using a sub-array size of Nsub.

In the conventional SVD method, we used values of N = 5 and Nsub = 24 to match those used
in the conventional study [21]. In the previous study, multiple transmitters were used. The use of
multiple transmitters and of sub-arrays is theoretically the same.

3. Results and Discussion

3.1. Evaluation of the Number of the Propagation Modes with DL

To evaluate the M estimation procedure using the DL technique, we performed a simple
simulation because it is difficult to know ground truth of M in experimental study. We assumed
that three waves with k = 1000, 2000, and 3000 rad/m were propagating. The signal-to-noise ratio
(SNR) was 40 dB, NR = 28, and Nsub = 15.

The estimation results showed step-like changes with increasing η1. Within the
−100 dB ≤ η1 ≤ −90 dB,−80 dB ≤ η1 ≤ −20 dB, and−10 dB ≤ η1 ≤ 0 dB ranges, the corresponding
estimated M values were 14, 3, and 0, respectively. The root mean square error (RMSE) of the
wavenumber estimation process with η1 that gives the correct M is 0.73 rad/m. An important point
that should be noted here is that the true M value is estimated using a wide range for η1, e.g.,
−80 dB ≤ η1 ≤ −20 dB.

3.2. Experimental Results

We first investigate the optimal size for the sub-array. Figure 3 shows the RMSEs when we use
full-array sizes of NR = 28 and 32 and change sub-array size. The measured specimen was bone-mimicking
plate. The results show that the optimum sub-array size is N = NR/2. Therefore, with NR = 28, the value
of Nsub = 15 is the optimal size.
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Figure 3. Dependence of the proposed method on sub-array size. The black solid line and the dotted
line show the results for arrays composed of different numbers of receivers. The vertical black dotted
lines show the horizontal values with N = NR/2, i.e., Nsub − 1 = NR/2.

In the previous paragraph, we described the experimental investigation of the optimal size.
Here, we describe the theoretical investigation of this size [29]. To recover the rank of the covariance
matrix with M modes, a minimum of M times averaging, i.e., N = M, is required. In addition,
to measure M modes, a minimum of Nsub = M + 1 is required. Under these two conditions,
when we attempt to maximize M and Nsub, the number of receivers NR should be expressed using
NR = Nsub + N − 1 = 2N. Theoretically, we can confirm that the selection N = NR/2 is reasonable.
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We determined that Nsub = 15 is the optimal size. Therefore, the following results employed
Nsub of 15. Figures 4–7 show the experimental results that were obtained for the copper plate and the
bone-mimicking plate, respectively. The color maps show the results obtained using the conventional
SVD method. The red dots represent estimated results obtained using the proposed method. The solid
white lines show the theoretical curves. To remove any obvious false estimates, we removed all estimates
with cp < 1200 and cp > 50, 000 m/s. The proposed method thus successfully depicted the wavenumber
without the need for peak search processes.

The RMSEs of the estimation results when using the proposed method with the copper plate
and bone-mimicking plate were 108 rad/m and 121 rad/m, respectively. RMSEs are shown in
Table 1. The wavenumbers of the shear waves that had larger effects on the theoretical curve than the
longitudinal wave at the center frequency (1.0 MHz) of the copper plate and the bone-mimicking plate
were 2780 rad/m and 3879 rad/m, respectively. When compared with the wavenumber of the shear
wave, the RMSE was less than 4%.
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Figure 4. Wavenumbers of the 4-mm-thick copper plate estimated using the conventional singular
value decomposition (SVD) method. The color intensity map shows the results obtained using the
conventional SVD method. Solid white lines show the theoretical curves.
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Figure 5. Wavenumbers of the 4-mm-thick copper plate estimated using the proposed method and
the conventional SVD method. Red dots show the estimates obtained using the proposed method.
The color intensity map shows the results obtained using the conventional SVD method. Solid white
lines show the theoretical curves.
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Figure 6. Wavenumbers of the 4-mm-thick bone-mimicking plate estimated using the conventional
SVD method. The color intensity map shows the results obtained using the conventional SVD method.
Solid white lines show the theoretical curves.
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Figure 7. Wavenumbers of the 4-mm-thick bone-mimicking plate estimated using the proposed method
and the conventional SVD method. Red dots show the estimates obtained using the proposed method.
The color intensity map shows the results obtained using the conventional SVD method. Solid white
lines show the theoretical curves.

Table 1. Root mean square errors (RMSEs) of the experimental results with different settings. The units
are rad/m.

Proposed Method with
Copper Plate

Proposed Method with
Bone-Mimicking Plate

ESPRIT with Fixed
Threshold (−40 dB)

ESPRIT with Fixed
Threshold (−30 dB)

Proposed Method with
ωw = 0.1 MHz

Proposed Method with
ωw = 0.75 MHz

108 121 184 143 144 118

The spectrum at the frequency that is indicated by the white dotted line in Figure 7 is shown in
Figure 8. As Figure 8 illustrates, the proposed method has higher resolution than the conventional method
because the method can depict two modes around 4000 rad/m with small error. The wavenumbers that
were estimated using the proposed method were almost the same as those at the peak position in the
SVD spectrum when the resolution of the SVD method was high enough or the resolution of the ESPRIT
algorithm was insufficient to separate the signals. However, it is difficult to identify some of the peaks
because of their small amplitudes and low prominence when using the SVD method, such as the peaks
with wavenumbers of approximately 2800 and 4300 rad/m.
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Figure 8. Depiction of the wavenumbers obtained using the proposed method and the spectrum
obtained using the conventional method at 1.0 MHz. This is the cross-sectional view at the white dotted
line shown in Figure 7. The vertical blue dotted lines indicate the theoretical values.

The wavenumber or phase velocity estimation steps that have high computational
costs in the proposed method are eigenvalue decomposition of the covariance matrix with
a size of Nsub × Nsub, O(N3

sub) and the SVD of the matrix of size Nsub − 1 × 2M,
O(min

{
(Nsub − 1)× 4M2, (Nsub − 1)2 × 2M

}
). The calculation steps are shown in detail in [30].

The corresponding steps in the conventional SVD method, the Radon transform method, and the
S-SVD method are the SVD of the matrix of size N × Nsub, O(N2 × Nsub) [30], the inversion of the
matrix of size Nc × Nc, O(N3

c ), and the inversion of the matrix of size Nk × Nk, O(N3
k), respectively,

where Nc and Nk are the numbers of sampling points in the phase velocity and wavenumber axes,
which is normally larger than 64. Therefore, the SVD method showed the smallest computational cost
with the lowest resolution. The computational cost of the proposed method was significantly lower
than the corresponding costs of the Radon and S-SVD methods.

The calculation time (not including loading time) for the experimental data was less than 0.5 s
when using a commercial processor (Core(TM) i7-7500U; Intel, Santa Clara, CA, USA) on a laptop
computer with MATLAB (R2017a, Mathworks, Natick, MA, USA) platform. The calculation time taken
for the conventional Radon transform was less than 60 s, according to [12]. While noting here that
we did not use the same processor or computer, and in fact used a faster processor, the reduction in
the calculation time of 99% is interesting. In addition, the computational cost of the S-SVD method
is greater than that of the Radon method. The calculation time of the conventional SVD method is
around 0.1 s. Note that, as mentioned above, the conventional SVD method has considerably lower
computational complexity than the proposed method. Because we ran the SVD method and the
proposed method on MATLAB platform, the calculation time does not directly reflect the theoretical
complexity. To examine the effectiveness of the proposed method in determination of M, we compared
the performance of the proposed method with that of the ESPRIT method with a fixed threshold.
Figures 9 and 10 show the results obtained for a bone plate when we used eigenvalues that exceed−40
and −30 dB of the maximum eigenvalue, respectively. The red circles represent the results obtained
using the proposed method. The blue cross marks show the estimates obtained using the ESPRIT
algorithm with a fixed threshold. The solid gray lines show the theoretical curves. The RMSEs of
the ESPRIT method with fixed thresholds of −40 and −30 dB were 184 and 143 rad/m, respectively.
As shown in Figure 9, smaller thresholds tend to make the estimates unstable because the ESPRIT
algorithm treated the noise as the desired signal. In contrast, larger thresholds can miss the weaker
modes as shown in Figure 10. The threshold should thus be determined manually. The results are
sensitive to the threshold value, so it is difficult to determine the threshold.
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Figure 9. Wavenumbers of the 4-mm-thick bone-mimicking plate estimated using the conventional
estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm at a fixed
threshold of −40 dB and the proposed method. Red dots show the estimates obtained using the
proposed method and blue cross marks show the estimates obtained using the conventional method.
Solid gray lines show the theoretical curves.
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Figure 10. Wavenumbers of the 4-mm-thick bone-mimicking plate estimated using the conventional
ESPRIT algorithm at a fixed threshold of −30 dB and the proposed method. Red dots show the
estimates obtained using the proposed method and blue cross marks show the estimates obtained
using the conventional method. Solid gray lines show the theoretical curves.

Figure 11 shows the wavenumbers for values of Nsub = 5 and 26. The red cross marks and blue
circles show the results obtained for Nsub = 5 and 26, respectively. The black lines show the theoretical
curves. The smaller sub-array had lower resolution and missed many of the modes, while the larger
sub-array caused false estimates.

We used a frequency window, denoted by ωw, of 0.5 MHz. When we used ωw values of 0.1
and 0.75 MHz in the experiments with the bone-mimicking plate, the RMSEs obtained were 144 and
118 rad/m, respectively. Therefore, the dependence on ωw was insignificant and a larger window
width provided stable estimation.

We chose a DL factor of η2 = −40 dB. Because this value was added for stabilization when we
analyzed the frequency range using a significantly smaller signal intensity, a smaller value was selected.
When we used a larger value, more stable estimates were obtained as a result but the weaker modes
were missed by the method.



Appl. Sci. 2018, 8, 652 11 of 13

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Frequency(MHz)

0

1000

2000

3000

4000

5000

6000

W
av

en
u

m
b

er
(r

ad
/m

)

 N
sub

=5

 N
sub

=26

Figure 11. Wavenumbers estimated for differently sized sub-arrays. Red cross marks and blue circles
show the results obtained for Nsub = 5 and 26, respectively. Black lines show the theoretical curves.

We used the ESPRIT algorithm in this study. The novel advantage of the ESPRIT algorithm when
used for wavenumber estimation of a guided wave propagating along the cortical bone is that it can
estimate the wavenumber without the need for a peak search process. To extract the wavenumber from
the f –k spectrum image when using conventional methods such as the Radon and SVD-based methods,
multiple one-dimensional peak search processes are required [6,20]. While the computational cost is not
high, parameters such as the intensity threshold and prominence must be set. Thus, the performance
of the conventional method such as RMSE depends on the additional parameter setting.

4. Conclusions

In this study, we proposed a high-resolution and low-computational-cost technique for an AT device.
We estimated the number of propagation modes using information theoretic criteria and the DL
technique. We proposed a method to estimate the optimal DL value required for guided wave estimation.
The proposed method did not involve processes of high computational cost. The proposed method was
evaluated experimentally using 4-mm-thick copper and bone-mimicking plates. The estimation error was
less than 4% and the calculation time when using the proposed method on a laptop computer was less
than 0.5 s. While the processor is different and is in fact faster than that which was used in the previous
conventional study, the calculation time is less than 1% of that of the conventional method. We believe
that our proposed method thus has the potential to accurately characterize the elastic properties of
cortical bone.
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Abbreviations

The following abbreviations are used in this manuscript:

QUS quantitative ultrasound
AT axial transmission
f –k frequency-wavenumber
SVD singular value decomposition
S-SVD sparse singular value decomposition
ESPRIT estimation of signal parameters via rotational invariance technique
SNR signal-to-noise ratio
MDL minimum description length
DL diagonal loading
RMSE root mean square error
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