論

<u>v</u>.

方向性結合器型プリント基板上電磁界センサの開発

黒川 悟[†] 佐藤 亨^{††}

Development of Directional-Coupler Type Sensor for Printed Circuits

Satoru KUROKAWA † and Toru SATO ††

あらまし プリント基板上の線路を伝搬する信号の方向,特性インピーダンスのマッチング不良やその不良箇 所を特定することが可能なセンサとして,ストリップ線路構造の方向性結合器型センサを考案した.試作センサ は,磁界センサ,電界センサでは測定が困難であった,電磁界の伝搬方向や線路での特性インピーダンスのマッ チング不良箇所を測定することが可能である.本論文では,FDTD 法数値計算により最も良好な方向性を有する センサの物理的な形状を求め,これを試作し,センサの有効性を示した.試作センサは,6GHz 以下で25 dB 以 上,7GHz 以下では17 dB 以上の方向性を有することが確認された.

キーワード FDTD 法,方向性結合器,マイクロストリップライン,電磁界センサ

1. まえがき

近年,電気電子機器はパソコン CPU の動作周波数 が GHz に至るなどますます高速動作化しており, そ れに伴い機器の設計,試作に必要となる回路信号の観 測も GHz オーダとなり, これまでに用いてきたオシ ロスコープ用の測定プローブでは信号そのものの観 測が困難となっている.また,機器の回路設計もこれ までの集中定数回路的な設計でなく,分布定数回路設 計手法を取り入れた設計が必要となり,プリント基板 上の線路としてマイクロストリップ線路やコプレーナ 線路を用いた線路設計が必要となっている[1],[2].こ のような分布定数線路の設計では,線路の特性イン ピーダンスの設計だけではなく, 接続する回路どうし のマッチング設計が重要である.これらの試作回路の 動作確認では,特性インピーダンスのマッチング不良 やその不良箇所を特定することが必要となる、これま での回路測定に用いられているプローブなどでは測定 箇所の電圧波形や電流波形を観測することは可能で あるが,特性インピーダンスのマッチング不良やその

^{††} 京都大学大学院情報学研究科,京都市 Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, 606-8501 Japan 不良箇所を特定することは非常に困難である.このた め筆者らは,特性インピーダンスのマッチング不良や その不良箇所を特定することのできるセンサとして, ストリップ線路構造の方向性結合器型センサを考案し た[3],[4].試作センサは,磁界センサ,電界センサで は測定が困難であった,電磁界の伝搬方向や線路での 特性インピーダンスのマッチング不良箇所を測定す ることが可能である.まず,試作センサの構造,動作 原理を説明する.次に,FDTD法(Finite Difference Time Domain Method)[5],[6]による数値計算を用い て,プリント基板材料誘電率を固定し,センサの方向 探知性能と,その線路幅など物理的な形状に対する依 存性を検証し,最適な寸法を決定する.最後に,この 計算に基づいて試作されたセンサの特性を示し,数値 計算結果との比較を行い,特性を実証する.

2. 提案センサの構造と動作原理

センサは,プリント基板の片面が導体面となる有限 長のマイクロストリップ線路を形成し,マイクロスト リップ線路上面に,プリント基板と同一の誘電率の誘 電体基板を有するストリップ線路構造のセンサである. ストリップ線路の両端に導体基板側から測定用コネク タとして SMA あるいは SMC コネクタを接続し,測 定器に接続する構造としている.本論文で FDTD 法 により解析するストリップ線路構造方向性結合器型セ ンサの構造を図1 に示す.次に,試作センサの動作原

[†]京都府中小企業総合センター,京都市

Kyoto Prefectural Comprehensive Center for Small and Medium Enterprises, 134 Cyudoji-Minamimachi, Simogyouku, Kyoto-shi, 600-8813 Japan

図 1 試作センサの概要 Fig. 1 Configuration of proposed sensor.

図 2 試作センサの動作原理 Fig. 2 Operational principle of the sensor.

理を説明する.図2に示す伝送線路としてのストリッ プ線路を、ポート1からポート2の方向に伝搬する進 行波を考える.この進行波による高周波磁界がセンサ のストリップ線路に鎖交し, jωMI1 なる起電力が発 生し,この起電力による電流 I_h がポート $4 \rightarrow$ ポート 3の方向に流れる.また,進行波による電界がセンサ 側の線路に集中することによって, $j\omega C(V_1 - V_2)$ な る電流 Ie が発生し, ポート3, ポート4 ともに出力方 向に流れる.ここで,M,Cはそれぞれ,被測定マイ クロストリップ線路とセンサストリップ線路との間の 相互インダクタンス,相互容量を示し,V₁,I₁,V₂は それぞれ,被測定マイクロストリップ線路の電圧,電 流,センサストリップ線路の電圧を示す.したがって, ポート 3 に出力される電流は $I_3 = I_h + I_e$, ポート 4 に出力される電流は $I_4 = I_h - I_e$ となる. センサスト リップ線路幅 W, センサストリップ基盤厚み T_1 , 被 測定マイクロストリップ線路とセンサストリップ線路 間の距離 T_2 などを変化させ, M, C の値を調整する ことにより, I_h = I_e となるよう設計すれば, ポート 4 には何も出力されず,ポート3 にのみ出力される.

観測する線路上に進行波と反射波が存在する場合 には,ポート3,ポート4ともに出力を生じるため, ポート3に現れる入射波のレベルとポート4で観測さ れる反射波のレベル,到達時間を同時に観測すること により,観測線路の特性インピーダンスの不連続箇所 等を知ることが可能である.

3. FDTD 法によるセンサの特性解析

3.1 解析方法

特性インピーダンス 50 Ω のマイクロストリップ線 路上を伝搬するパルス信号を試作センサにより測定す る場合を想定し,FDTD 法数値計算により特性解析 を実施する.

200 mm × 80 mm × 10 mm の空間を 1.0 mm ×0.5 mm×0.2 mm の間隔で 200×160× 50 セルに分 割し,時間分割幅は約 0.6 ps と設定した.境界条件に は Liao 吸収境界 [7] を用いる.

被測定マイクロストリップ線路としては,比誘電率 4.3,誘電体厚み1.6mmのプリント基板に,厚み0, 線路幅3mmの特性インピーダンス約500の線路を 設定した.線路を伝搬する信号は,線路端とプリント 基板の導体面のギャップにパルス幅約100psのガウシ アンパルスを印加し,もう一方の線路端を500 終端 する方法とした.センサは,マイクロストリップ線路 の中央に配置する.センサのポート3,4は,マイク ロストリップ線路と同様に導体面と線路のギャップが 500 終端される構造として,このギャップに現れる信 号を測定することによりセンサの周波数特性を求める こととした.センサに用いるプリント基板の誘電率は, 試作に用いているテフロンの比誘電率2.6に固定した. また,センサのストリップ線路長さは,物理的に試作 が可能である最も短い長さである5mmとした.

まず,センサ形状が対称形となるよう A=11 mm, B=10 mm と設定し,センサ特性に最も大きな影響を 及ぼすパラメータと考えられる,センサストリップ 幅 W,被測定マイクロストリップ線路からの距離 T₂, センサプリント基板用誘電体厚み T₁による周波数特 性の違いを順に最適化した.最後に,センサグランド プレーンの大きさによる線路間以外での結合の影響 を検討するため,A,Bの値による周波数特性の違い を求め,本 FDTD 法数値解析の空間分割で求めるこ との可能な,最適と考えられるこれらの物理定数を 求める.なお,センサストリップ幅 W については, FDTD 法数値解析の W 方向分割セル幅 0.5 mm 間隔 で、センサプリント基板用誘電体厚み T_1 、被測定マ イクロストリップ線路からの距離 T_2 については、試 作に用いることが可能な市販プリント基板の厚みを 用いることとし、 T_1 については 0.8、1.2、1.6、2.4、3.2 mm それぞれの場合について、 T_2 については 0.8、1.2、1.6 mm それぞれの場合について、A、B につい ては A=B=9 mm から A=B=15 mm まで変化させ て数値解析を実施する.

解析空間の概要を図 3 に示す.なお,センサの特性 は,ポート 1 からの入力 P1 とポート 3 からの出力 P3 の比の dB 値 S₃₁,ポート 1 からの入力 P1 とポート 4 からの出力 P4 の比の dB 値 S₄₁,S₃₁ と S₄₁ の差で ある方向性 D を式 (1) により算出して評価する.

$$D = S_{31} - S_{41} \tag{1}$$

P3, P4 については,図4 に示す数値計算結果の 時間波形により,1.2 ns 以降に観測される被測定マイ クロストリップ終端からのわずかな反射波を終りの

図 3 解析空間の設定 Fig. 3 Setup of the computation space.

図 4 FDTD 法による時間波形の例 Fig. 4 Examples of computed waveform.

10%をハニングウィンドウとした時間窓 [8] により取 り除き,フーリエ変換した結果を用いて算出する.

3.2 ストリップ線路幅による周波数特性の変化

前節で定義した被測定マイクロストリップ線路上を ポート1からポート2の方向にのみ伝搬するパルス信 号が,試作センサのポート3,4それぞれに現れる時 間信号を求め,その信号のパワースペクトラムを求め ることにより,方向性を算出する.

本節では,まず W を FDTD 法数値解析の W 方向 分割セル幅 0.5 mm 間隔で, $0.5 \sim 2 \text{ mm}$ まで増加さ せ,方向性を比較する.センサストリップ線路プリント 基板の厚みを $T_1=0.8 \text{ mm}$ に固定し, $T_2=0.8$, 1.2 mmの場合についての方向性の計算結果を図 5,図 6 にそ れぞれ示す.計算結果では, $T_2=0.8$, 1.2 mmの場合 ともに,ポート3に現れる信号は特性インピーダンス が約 50 Ω となる W=2.0 mm の場合が最も高いレベ

図 5 方向性 $(T_1=0.8 \text{ mm}, T_2=0.8 \text{ mm})$ Fig. 5 Directivity $(T_1=0.8 \text{ mm}, T_2=0.8 \text{ mm})$.

図 6 方向性 $(T_1=0.8 \text{ mm}, T_2=1.2 \text{ mm})$ Fig. 6 Directivity $(T_1=0.8 \text{ mm}, T_2=1.2 \text{ mm})$.

図 7 ポート 3 の周波数特性 $(T_1=0.8 \text{ mm}, T_2=1.2 \text{ mm})$ Fig. 7 Frequency characteristics of port 3 $(T_1 = 0.8 \text{ mm}, T_2=1.2 \text{ mm}).$

図 8 ポート 4 の周波数特性 $(T_1=0.8 \text{ mm}, T_2=1.2 \text{ mm})$ Fig. 8 Frequency characteristics of port 4 $(T_1=0.8 \text{ mm}, T_2=1.2 \text{ mm}).$

ルとなっているが, ポート 4 に現れる信号のレベルも 最も高くなり, 方向性は最も悪くなる結果となった. 図 7, 図 8 に T₂=1.2 mm の場合のポート 3, ポート 4 の周波数特性を示す.

方向性が最も高くなるのは T_2 =0.8, 1.2 mm の場 合ともに, W=1.0 mm の場合であり, T_2 =0.8 mm の 場合 1 ~ 6 GHz では 23 dB 以上の方向性を示し, T_2 =1.2 mm の場合ほぼ 25 dB 以上の方向性を示し ている.この結果から,センサストリップ線路プリ ント基板の厚さ T_1 =0.8 mm,線路上面誘電体厚み T_2 =1.2 mm,線路幅 W=1.0 mm の場合が最も方向性 の優れたセンサとなることがわかった.

図 9 方向性 (W=1.0 mm, T_1 =0.8 mm) Fig. 9 Directivity (W=1.0 mm, T_1 =0.8 mm).

3.3 被測定マイクロストリップ線路からの距離に よる周波数特性の変化

前節の結果で最も方向性の優れていた,線路幅 W=1.0 mmの場合について,センサストリップ線 路上面誘電体厚みを $T_2=0.8$,1.2,1.6,2.4,3.2 mm として方向性を比較する.なお,ストリップ基板厚み は $T_1=0.8 \text{ mm}$ に固定した.

図 9 に方向性の周波数特性を示す.計算結果では, T_2 が厚いほどポート 3 の測定レベルは減少するが, ポート 4 の測定レベルは 1 ~ 6 GHz の周波数範囲 では T_2 =1.2 mm の場合が最も低く, 6 ~ 7 GHz では T_2 =3.2 mm の場合が最も低くなる.その結果方向性は, 1 ~ 6 GHz の周波数範囲では T_2 =1.2 mm の場合が最 も優れており 25 dB 以上の方向性を示し, 6 ~ 7 GHz では T_2 =0.8 mm 以外の場合に 15 dB 以上の方向性を 示す結果となった.前節の結果同様 T_2 =1.2 mm の場 合の計算結果が最も方向性が優れていることを示す結 果となった.

 3.4 センサプリント基板用誘電体厚みによる周波 数特性の変化

3.2, 3.3 の結果で最も方向性の優れていた, $W=1.0 \text{ mm}, T_2=1.2 \text{ mm}$ の場合について,センサス トリップ線路用基板厚みを $T_1=0.8, 1.2, 1.6 \text{ mm}$ と 変化させて方向性を比較する.

図 10 に方向性の周波数特性を示す. T_1 が大きいほ どポート3,4 ともに測定レベルは上昇するが,方向性 については, T_1 が小さいほど優れており $T_1=0.8$ mm の場合は 1 ~ 6 GHz の周波数範囲では 25 dB 以上の 方向性を示し,6~7 GHz では 15 dB 以上の方向性を 示す結果となった.

図 10 方向性 $(W=1.0 \text{ mm}, T_2=1.2 \text{ mm})$ Fig. 10 Directivity $(W=1.0 \text{ mm}, T_2=1.2 \text{ mm})$.

3.5 センサプリント基板寸法の影響

前節までの結果で最も方向性の優れていた, $W=1.0 \text{ mm}, T_2=1.2 \text{ mm}, T_1=0.8 \text{ mm}$ の場合につい てA, Bの値をA=B=9 mmからA=B=15 mmま で変化させて方向性を比較する.

図 11 に方向性の周波数特性を示す.ポート3の出 力は,基板寸法が大きいほど測定レベルは上昇する. ポート4の出力は,A=B=15mmの場合を除いて基 板形状が大きいほど測定レベルは上昇する傾向にある が,4.5 GHz 近辺で出力レベルが一致する傾向を示す. この結果,方向性については,A=11mm,B=10mm 以下の場合,1~6 GHz の周波数範囲では25 dB 以上 の方向性を示し,6~7 GHz では15 dB 以上の方向性 を示す結果となった.

3.6 評価結果

FDTD 法数値計算結果から,センサに用いるスト

図 12 センサ周波数特性測定概念図 Fig. 12 Measurement setup for frequency characteristics of the sensor.

リップ用プリント基板を比誘電率 2.6 のテフロンプ リント基板とし,ストリップ線路長をコネクタを接 続した場合の物理的に作成可能な 5 mm とした場合 には,センサストリップ幅 W=1.0 mm,センサスト リップ上面誘電体厚み $T_2=1.2 \text{ mm}$,センサプリント 基板厚み $T_1=0.8 \text{ mm}$,センサ寸法 $A=1 \sim 19 \text{ mm}$, $B=10 \sim 9 \text{ mm}$ とした場合, $1 \sim 7 \text{ GHz}$ の周波数帯域 において最も優れた方向性を有するセンサとなること を示すことができた.

4. 試作センサの特性解析

4.1 ネットワークアナライザによる周波数特性測定 FDTD 法数値計算結果で,優れた方向性を示した パラメータ W=1.0 mm, $T_1=0.8 \text{ mm}$, $T_2=1.2 \text{ mm}$, A=11 mm,B=10 mmとしてセンサを試作し,FDTD 法数値計算で設定した被測定マイクロストリップ線路 とほぼ同等の形状である,比誘電率 4.3,誘電体厚み 1.6 mm,線路幅 3 mm の特性インピーダンス約 50 Ω のマイクロストリップ線路上を伝搬する信号を測定す ることによりセンサの周波数特性を測定する.

入力波をマイクロストリップ線路のポート1に入力 し,試作センサのポート3,4のそれぞれの出力P3,P4 をネットワークアナライザにより測定する.測定信 号には,無反射状態とするためにポート2に接続し た50 Ω 終端抵抗からのわずかな反射波が含まれるた め,ネットワークアナライザのタイムドメインゲート 機能によりこの反射波を取り除き, S_{31} , S_{41} を求め, FDTD 法数値計算の場合と同様 S_{31} と S_{41} の差であ る方向性 D を式 (1)により算出して評価する.測定 の概念図を図 12に示す.なお,ネットワークアナラ イザは,タイムドメインゲート機能を有する Anritsu 37169A ベクトルネットワークアナライザのマイクロ 波測定機能を用いた.

4.2 測定結果と数値計算結果の比較

4.2.1 導体厚さを無視した場合

図 13 に,方向性の測定結果を数値計算結果と合わ せて示す.図中の「Experiment」は測定結果を,それ 以外の「A=,B=」はA,B それぞれの寸法での FDTD 法数値計算結果を示している.測定結果は,試 作センサが 1 ~ 6 GHz 程度までは 25 dB 以上の方向 性を有するセンサとして使用でき,また,7 GHz まで でも 15 dB 以上の方向性を示すセンサであることを示 している.

本節では,まず前節と同様にセンサのマイクロスト リップ線路の厚さを無限小とした場合についての計算 結果と比較を行う.図13に示す方向性の周波数特性 は,A=11 mm,B=10 mmの場合の数値計算結果と測 定結果とは5 GHz以下で $5 \sim 10 \text{ dB}$ 程度の誤差となっ ている.ポート3の出力は,A=11 mm,B=10 mmの場合の数値計算結果と測定結果とは,7 GHz以下 で0.3 dB以下の誤差で一致しているが,ポート4の 出力は,方向性と同様の結果を示している.これは, FDTD 法数値計算で定義したセンサ構造モデルと試 作センサとの物理的な差によると考えることができる.

4.2.2 導体厚さを 200 µm とした場合

図 13 に示す方向性の結果では,測定結果と数値計 算とは5GHz 以下で10dB以上の誤差を示している. これは,FDTD 法数値計算で定義したセンサ構造モ デルと試作センサとの物理的な差によると考えられる.

図 13 センサ寸法を変化させた場合の方向性 Fig.13 Directivity of the sensor with various sizes.

そこで,これまでの FDTD 法数値計算で無限小として いたセンサストリップ線路の厚みを,実験値と合うよ うに,FDTD 法数値解析での厚み方向セル分割最小幅 である 200 μ m と定義し, $T_1=0.8 \text{ mm}$, $T_2=1.2 \text{ mm}$, W=1 mmとして,その特性を計算する.

図 14 に示す S_{31} の計算結果は,無限小厚みのスト リップ線路の場合同様 7 GHz 以下で 0.3 dB 以下の誤差 で一致している結果となっている.図 15 に示す S_{41} の 計算結果,図 16 の場合ともに,A=11 mm,B=10 mmの場合の数値計算結果と測定結果とは 5 GHz 以下で 3 dB 以下,7 GHz 以下でも 5 dB 以下の誤差となって いる.

これらの結果は,試作センサが FDTD 法数値計算結 果で得られた方向性の結果同様,6 GHz までは 25 dB

図 14 ポート 3 の周波数特性 (導体厚み= 200μ m) Fig. 14 Frequency characteristics of port 3 (strip line thickness= 200μ m).

図 15 ポート 4 の周波数特性 (導体厚み= 200μ m) Fig. 15 Frequency characteristics of port 4 (strip line thickness= 200μ m).

図 16 方向性 (導体厚み=200 µm) Fig. 16 Directivity (strip line thickness=200 µm).

以上,7GHz まででも17dB 以上の方向性を有するセンサであることを示している.

また,図 17 に示す,実際の測定に利用する場合 の被測定線路の特性インピーダンスの変化について, ネットワークアナライザの TDR 測定機能により測定 した結果では,センサを配置しない場合の特性イン ピーダンスが 47 Ω 程度であるのに対して,図 17 の $0.2 \sim 0.4$ ns に示す,センサを配置した場所での特性 インピーダンスは 42 Ω 程度に低下することがわかる. この場合の反射係数 Γ は,式 (2)より,約 0.1 となる ことがわかり,実用に耐えうるレベルと考えることが できる.

$$\Gamma = \frac{Z_L - Z}{Z_L + Z} \tag{2}$$

ただし, *Z*_L は被測定線路の特性インピーダンス, *Z* はセンサを配置した箇所の特性インピーダンスである.

なお,図 17 の 0 ~ 0.1 ns, 0.9 ~ 1.0 ns でそれぞ れ特性インピーダンスが大きく変化しているが,これ はそれぞれが,被測定マイクロストリップ線路の入力 端コネクタ,出力端コネクタの部分であるためである. 試作センサを配置した場合の特性インピーダンスの変 化は,コネクタ部での変化よりも小さいことがわかる.

5. む す び

本研究では,被測定伝送線路への入力波と伝送線路 端からの反射波を同時測定し,反射波の到達時間と 振幅を測定することにより,線路端の特性インピーダ ンスのマッチング不良やその不良箇所を特定するスト リップ線路構造の方向性結合器型センサについて,そ の特性を FDTD 法により解析し,物理的に試作が可 能なセンサとして良好な性能を示す形状を数値解析に より求めることができた.

また, FDTD 法数値解析で良好な方向性を示した 形状のセンサを試作し,5GHz 以下で25dB 以上, 7GHz 以下でも 17dB 以上の方向性を有することを 確認することができた.この結果は,提案するセンサ が,今後ますます高速化する回路の設計,試作に有効 であることを示している.今回は,実験上の制約もあ り,試作センサの物理的な形状パラメータを特性に影 響の大きいと考えることのできるパラメータから逐次 最適化し,良好な特性を示すセンサ形状を求めた.実 際には、全パラメータを同時に最適化するべきである が,試作センサは十分な性能を有しているといえる. 今回は,マイクロストリップ線路上を伝搬する信号を 観測するセンサとして、方向性探知センサを提案した が,被測定線路としてはコプレーナ線路等も存在する. これら様々な線路に対する動作については,今後本論 文において有効性が確認された FDTD 法数値計算に よる検証も含めて,実施していくこととしたい.

謝辞 本研究において,貴重な御意見を頂いた産業 技術総合総合研究所小見山耕司氏,岡山大学工学部助 教授和田修己氏,元東京工芸大学教授小西良弘氏,元 京都大学大学院助教授中島将光氏,中小企業庁地域も のづくり対策事業中小企業技術開発産学官連携促進事 業費補助金共同研究者である,産学官連携推進委員会 委員の皆様,福島県ハイテクプラザ,茨城県工業技術 センター,東京都立産業技術研究所,長野県情報技術 試験所,岡山県工業技術センター担当者の皆様に感謝 致します.なお本研究は,中小企業庁地域ものづくり 対策事業中小企業技術開発産学官連携促進事業費によ

り実施した.

文 献

- [1] 中島将光,マイクロ波工学,p.328,森北出版,1975.
- [2] 小西良弘,実用マイクロ波技術講座第2巻,p.338,日刊 工業新聞社,2001.
- [3] 黒川 悟,佐藤 亨, "マイクロストリップ線路型ノイズ 源探知センサの開発"、電学電磁界理論研資,EMT-01-59, June 2001.
- [4] 黒川 悟,佐藤 亨,"方向性結合器型プリント基板上電 磁界センサの開発とその数値解析"、電学電磁界理論研資, EMT-01-93, Nov. 2001.
- [5] K.S. Kunts and R.J. Lubbers, The finite Difference Time Domain Method for Electro-Magnetics, p.448, CRC Press, Boka Raton, USA, 1993.
- [6] 橋本 修,他,FDTD 時間領域差分法入門,p.124,森北 出版,1996.
- [7] Remcom Inc., User's Manual for XFDTD the Finite Difference Time Domain Graphical User Interface for Electromagnetic Calculations, Version 5.0, p.133, 1998.
- [8] S. kurokawa and T. Sato, "A Compact Time-domain Evaluation Scheme for Electromagnetic Shielding Clothes," Proc. KJJC-AP/EMC/EMT 2001, pp.86– 89, 2001.

(平成 14 年 3 月 7 日受付, 6 月 14 日再受付)

黒川 悟 (正員)

昭 62 千葉大・工・電気卒.平元同大大 学院修士課程了.平 14 京大大学院・情報・ 通信情報博士後期過程研究指導認定退学. 現在,京都府中小企業総合センター研究開 発課主任.EMI 測定,小型アンテナの研 究に従事.IEEE 会員.

佐藤 亨 (正員)

昭 51 京大・工・電気第二卒.昭 56 年同 博士課程研究指導認定退学.現在,同大・ 情報・通信情報システム・教授.レーダに よる大気,降雨,スペースデブリの観測, 地下探査レーダの信号処理,衛星通信プロ トコルの研究に従事.工博.昭 61 地球電

磁気・地球衛星圏学会田中館賞受賞.航空宇宙学会,IEEE,地 球電磁気・地球惑星圏学会各会員.