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Two-Dimensional Ultrawideband Radar Imaging of a
Target With Arbitrary Translation and Rotation

Takuya Sakamoto, Member, IEEE, and Toru Sato, Member, IEEE

Abstract—Indoor target detection and imaging technologies
hold great interest for security surveillance systems. The ultra-
wideband (UWB) radar is promising because it can complement
conventional camera-based systems. However, conventional UWB
radar imaging systems are costly and impractical because they
require large antenna arrays for acceptable resolution. This paper
proposes a low-cost UWB radar imaging method using the motion
of a target. The method employs five antennas for estimating the
motion of a target, including its rotation, to obtain an image.
Previous work deals only with a target in translation without ro-
tation, which makes the method difficult to apply in practice. The
proposed method, an extension of such previous methods, obtains
an accurate image for an elliptical or distorted nonelliptical target
with arbitrary translation and rotation. Numerical simulation and
experimental results show that the proposed method is capable of
accurately estimating motions and shapes.

Index Terms—Radar imaging, rotation, security system, target
motion, ultrawideband (UWB) radar.

I. INTRODUCTION

R ECENTLY, indoor security surveillance systems have
attracted a great deal of attention because of increased

threats from crime and terrorism. Target imaging technologies
are critical for such systems. Ultrawideband (UWB) radar is a
promising technology because of the advantages that it brings
which are not found in conventional camera-based systems,
such as accurate distance measurement. Although a number
of proposed imaging methods have had good accuracy and
resolution, most of these methods require large and costly
antenna arrays and radio-frequency switches or bulky robotic
scanning systems. For radar imaging, Jofre et al. [1] showed
that the number of antennas has a large effect on image quality.
This means that there is a lower bound for the number of
antennas needed to obtain the required resolution. In fact,
Leuschen and Plumb [2] and Yarovoy et al. [3] employed
50 and 13 antennas, respectively, for ground-penetrating radar
imaging. Counts et al. [4] employed only six antennas, but also
used mechanical antenna scanning. To obtain even better image
quality, Masuyama and Hirose [5], Dehmollaian and Sarabandi
[6], Yang and Fathy [7], and Zhuge et al. [8] employed 144,
61, 256, and 81 antennas, respectively. To realize a simple and
cost-effective UWB radar system, a new technology is needed.
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A novel approach to this problem has been proposed in recent
years. To mitigate the measurement time caused by the need for
sequential switching to select an antenna from a large array,
a code-division multiple-transmission scheme [9] has been pro-
posed to realize high-speed real-time imaging. Huang et al. [10]
introduced compressive sensing to reduce the number of anten-
nas. They reduced the total number of antennas from 51 to 10
while maintaining the same sidelobe level in the image.

Another UWB radar imaging method to reduce the required
number of antennas has been proposed by Matsuki et al. [11].
This is based on the motion of the target rather than the
large antenna arrays. This idea is similar to Inverse Synthetic
Aperture Radar techniques [12], [13], because both employ
the motion of the target to improve image quality. However,
for our intended application, the problem is more complex,
because the target is relatively close to the antennas. This
shifts the scattering centers on the target surface, depending
on the relative positions of the antenna and target. In addition,
the target motion cannot be modeled as a simple function
because it is basically arbitrary. The method in [11] has been
shown to be effective, because the system can be simplified
and produced at a lower cost than conventional large array-
based systems. The method assumes that a target moves in an
unknown orbit without rotating. However, this assumption is
not always relevant, because a target can change its viewing
angle depending on its direction of movement. Although some
proposed methods compensate for rotation to improve image
resolution [14], [15], these methods assume that the target in
the far field for which a scattering center can be modeled as
a fixed point. Because this paper aims to develop an imaging
method for a target in the near field, the motion of the scattering
center must be taken into account. This paper presents a UWB
radar system with five antennas for simultaneous estimation
of a target’s shape, translation, and rotation. The performance
of the proposed method is established using both numerical
simulations and experimentation.

II. SYSTEM MODEL

A 2-D model is assumed for simplicity, and it is our objective
to estimate a 2-D target shape under this assumption. A five-
element linear antenna array is installed at fixed intervals of
Δx = 0.2 m on a straight line, as shown in Fig. 1. This
straight line could correspond to a wall or ceiling of a hallway.
Typically, the problem could be the imaging of the cross section
of a human body walking along the hallway.

Each antenna is connected to a UWB pulse generator and
a receiver and is operated as a monostatic radar system with
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Fig. 1. Assumed system model.

modulation to avoid interference with other antennas. Any
modulation can be used here as long as they are orthogonal to
each other to realize a type of multiple-access system. Pulses
are simultaneously transmitted from each antenna at time in-
tervals of Δt, and echoes are received at the same antenna.
The imaging methods proposed in this paper employ only the
delay time of the echoes, which means it is essential to have an
accurate ranging capability. The transmitted waveforms should
satisfy this condition.

The target is assumed to have an unknown boundary
(X0(ξ), Y0(ξ)), where 0 ≤ ξ ≤ 2π is a parameter. The centroid
of the target is at the origin of the assumed coordinates. Under
this condition, we can define rotation around the origin inde-
pendently of the shape of the target. The target moves with a
translation (XT (t), YT (t)) and a rotation φ(t) with time t. The
target boundary (X(ξ, t), Y (ξ, t)) at time t is determined by

[
X(ξ, t)

Y (ξ, t)

]
= R (φ(t))

[
X0(ξ)

Y0(ξ)

]
+

[
XT (t)

YT (t)

]
(1)

where R(φ) denotes a rotation matrix given by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (2)

The distance between each antenna and the scattering cen-
ter of the target is measured as Ri(t) (i = 1, 2, . . . , 5)
using the ith antenna at each time step tn = nΔt. The pur-
pose of this paper is to develop a method to estimate the
translation (XT (t), YT (t)), rotation φ(t), and the target shape
(X0(ξ), Y0(ξ)) using the range data Ri(t) (i = 1, 2, . . . , 5).

III. PROPOSED METHOD

Matsuki et al. [11] proposed a method for estimating the
translational motion and shape of a target, based on a fitting
method using a circle. Because a circle has 3 DOFs, three
antennas were used. However, this method cannot estimate
the target’s rotation because of the symmetry of a circle. We
propose a new method using an ellipse rather than a circle to
estimate both the rotation and the translation to obtain a target
image.

A. Motion Estimation by Optimization With an
Elliptical Shape Model

The proposed method estimates a local target shape for each
time step t = tn using an elliptical model with five parameters

a, b, x0, y0, and θ. The ellipse is expressed as follows:(
cos2 θ

a2
+

sin2 θ

b2

)
(x− x0)

2 +

(
sin2 θ

a2
+

cos2 θ

b2

)
×

(y − y0)
2 + sin 2θ

(
1

a2
− 1

b2

)
(x− x0)(y − y0) = 1 (3)

where a and b are the long and short axes of the ellipse, (x0, y0)
is the center of the ellipse, and θ is the rotational angle. The dis-
tance between the ith antenna and the corresponding scattering
center ci(a, b, x0, y0, θ) is defined as ri(a, b, x0, y0, θ). These
variables ci and ri are calculated using the ith antenna position
xi. The scattering center ci(a, b, x0, y0, θ) is equivalent to the
point on the ellipse that is closest to the antenna xi because
there is no point closer to the antenna than the foot of a
perpendicular on such a convex curve.

We define a cost function

Fn(a, b, x0, y0, θ) =

Na∑
i=1

|ri(a, b, x0, y0, θ)−Ri(tn)|2 (4)

where Na = 5 is the number of antennas. By minimizing this
cost function, we determine the most likely parameter set of an
ellipse using

(an, bn, x0n, y0n, θn) = argminFn(a, b, x0, y0, θ). (5)

To carry out this optimization process, the scattering center
points cn,i i = 1, 2, . . . , 5 for each time step t = tn must be
calculated. To calculate these scattering centers, the optimized
parameters (x0n, y0n, an, bn, θn) and each antenna position
xi are used. The scattering center point cn,i is estimated as
the foot of the perpendicular drawn through the ith antenna
position. This process can be computed analytically, as detailed
in the Appendix. The Levenberg–Marquardt algorithm is used
to optimize (5) using the analytical expression for the scattering
centers. The Levenberg–Marquardt algorithm is known to be
fast and stable for minimization problems if the optimum cost
function value is close to zero [16]. We call the motion estima-
tion method proposed here the one-step optimization method,
in contrast to the methods discussed next.

B. Stabilized Optimization With Fixed Parameters of the
Elliptical Shape Model

We modify the optimization scheme presented in the previ-
ous section to stabilize the optimization process. Previously,
we dealt equally with the five parameters a, b, x0, y0, and θ.
However, they can be treated differently because they have
different physical meanings. The key point is that a and b are
related to the target shape, while the others are related to its
motion. Using these characteristics, we introduce a smoothing
process for a and b. We independently estimate the other
parameters x0, y0, and θ at each time step with no smoothing.

The proposed optimization procedure for a and b is ex-
pressed as

(â, b̂) = argmin
(a,b)

Nobs∑
n=0

min
(x0,y0,θ)

Fn(a, b, x0, y0, θ) (6)
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where Nobs is the total number of time steps for which
the observed data are analyzed. The parameters (a, b) are
estimated using the quasi-Newton method. For each (a, b),
the remaining parameters (x0, y0, θ) are optimized using the
Levenberg–Marquardt algorithm.

The model assumes the fixed parameters a and b throughout
the data set, which does not necessarily mean that the target is
modeled as an ellipse because the estimated motion is compen-
sated for to obtain the final image, as explained in later sections.
The optimization is stabilized because the number of degrees
of freedom is reduced from five to three for (x0, y0, θ). We
call this motion estimation method the two-step optimization
method with fixed shape parameters.

If the target shape is close to an ellipse, the method works
well for stabilizing the optimization by averaging the data in
terms of time. The method, however, cannot be applied to
a target that is distorted from an ellipse. In this case, this
optimization must be extended, as described in the next section.

C. Stabilized Optimization With Time-Varying Parameters
of the Elliptical Shape Model

To extend the optimization, we use the procedure

(âm, b̂m)=argmin
(a,b)

m+M/2∑
n=m−M/2

min
(x0,y0,θ)

Fn(a, b, x0, y0, θ) (7)

which means that a and b are fixed during a finite period
m−M/2 ≤ n ≤ m+M/2 while the other parameters are
optimized at each time step. Here, M is a fixed value cor-
responding to the period for which the data are averaged to
determine one set of a and b.

After calculating âm and b̂m, these time series are smoothed
using a Gaussian filter as follows:

ām =

∑
Δm âm+Δm exp(−Δm2Δt2/2σ2)∑

Δm exp(−Δm2Δt2/2σ2)
(8)

and the smoothed b̄m’s are calculated similarly. Finally, these
smoothed values ām and b̄m are used for each time step to
optimize the remaining parameters x0n, y0n, and θn using the
Levenberg–Marquardt algorithm

(x0n, y0n, θn) = arg min
(x0,y0,θ)

Fn(an, bn, x0, y0, θ) (9)

where an and bn are set by

(an, bn) =

⎧⎨
⎩

(
āL1

, b̄L1

)
(n < L1)

(ān, b̄n) (L1 ≤ n ≤ L2)
(āL2

, b̄L2
) (n > L2)

(10)

where L1 = M/2 and L2 = Nobs −M/2. For n in both ends
n < L1 and n > L2, there are inadequate numbers of data sam-
ples to be smoothed using (8). Therefore, we use the available
smoothed parameters (āL1

, b̄L1
) and (āL2

, b̄L2
) at m = L1 and

m = L2.
These three parameters (x0n, y0n, θn) are used as the esti-

mated translational and rotational motions as in the previous
section. We call this revised motion estimation method the

two-step optimization method with variable shape parameters.
These three proposed methods are compared in the following
sections.

D. Phase Ambiguity in Estimating Rotational Motion

The parameters (x0, y0) and θ correspond to the translation
and rotation of the target. Note that θ has ambiguity with integer
multiples of π. All models expressed with θ +mπ are identical,
where m is an arbitrary integer. Because of this ambiguity, an
estimated rotational motion can have discontinuities, making
it difficult to estimate the rotation accurately. Consequently,
we select the rotational angle that is closest to the previously
estimated angle using

m = argmin |θn − θn−1 +mπ| (11)

where θn is the estimated rotational angle at time tn, thus
minimizing the gap between two adjacent angles. We then
update θn from θn ← θn +mπ to estimate the rotation.

E. Imaging Process by Compensating for Target Motion

The target shape is obtained from the target motion estimated
using the procedure described in the previous sections. The
image is estimated from the scattering centers by compensating
for the motion. The scattering centers are used because the
elliptical model approximates the target shape locally around
the scattering centers and it is not relevant to use the entire
elliptical shape estimated from the optimization process. Note
that the scattering centers have already been calculated in (5)
because ri(a, b, x0, y0, θ) corresponds to the distance between
a scattering center cn,i and an antenna position xi. The next
step is to compensate for (x0, y0) and θ to estimate the target
shape at the initial state t = 0 using

[
X̂

(n,i)
0

Ŷ
(n,i)
0

]
= R(−θn)

(
cn,i −

[
x0n

y0n

])
. (12)

IV. PERFORMANCE EVALUATION USING

NUMERICAL SIMULATION

A. Application to an Elliptical Target

We set the actual shape parameters a = 0.15 m, b = 0.10 m,
and θ = −π/4 rad. The translation is given by

XT =X0 + vxt, (13)

YT =YT0 + YTs sin(ω0t+ χ0) (14)

and the rotation is given by

φ(t) = φ0 sin(ωφt) (15)

where X0 = −0.4 m, vx = 2.0 m/s, YT0 = 0.5 m, YTs =
0.1 m, ω0 = 2π rad/s, χ0 = π/3 rad, φ0 = 1.3π rad, and ωφ =
π rad/s. The sampling interval is set at Δt = 5.0 ms.
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Fig. 2. Assumed elliptical target shape and motion with rotation.

Fig. 3. Estimated scattered points and target shape for an elliptical target.

Fig. 2 shows an elliptical target moving to the right and ro-
tating clockwise. The solid lines and white circles in this figure
provide snapshots of the target and its actual center positions.
The five triangles on the x-axis represent the antenna positions.
Note that the target boundaries are drawn every 100.0 ms purely
for clarity, although the actual sampling interval is 5.0 ms.
Some of the following figures are drawn in the same way.

Here, we demonstrate the results of applying the one-step
optimization method. The white dots in Fig. 3 indicate the
estimated scattering centers cn,i, which are accurately located
on the actual target boundaries (solid lines). These scattering
centers are calculated with the parameters optimized in (5)
at each time step. These points are transformed to the initial
positions at t = 0 by compensating for the motion using (12) to
finally obtain the target image as black dots in Fig. 3. The target
shape is accurately estimated using the proposed method. This
is because the actual target shape is elliptical, which is identical
to the assumed elliptical model. The two-step optimization
method gives a similarly accurate imaging result in this case.

Fig. 4. Actual and estimated translation orbits using the one-step optimization
method for nonelliptical target (δ = 0.1).

Fig. 5. Actual and estimated rotation angles with the one-step optimization
method (δ = 0.1).

B. Application to a Slightly Distorted Nonelliptical Target

1) Distorted Target Model: We now investigate the perfor-
mance of the proposed methods for a nonelliptical target. We
assume a target shape expressed as follows:[

X0(ξ)

Y0(ξ)

]
=

[
a(1 + δ cos ξ) cos ξ

b (1 + δ cos(ξ + π/4)) sin ξ

]
. (16)

The target shape is distorted from an ellipse as δ is increased,
where δ = 0 corresponds to the elliptical model dealt with
in the previous section. The assumed target motion in the
following sections is the same as in the previous section.

2) Applying One-Step Optimization: First, we show the re-
sult of one-step optimization applied to a nonelliptical tar-
get with δ = 0.1. The estimated (x0, y0) center position of
the estimated elliptical model, corresponding to the estimated
translation motion, is illustrated by the dashed line in Fig. 4.
The estimation accuracy is not high enough at x = −0.2 m
and x = 0.1 m in this figure. Fig. 5 shows the actual and
estimated rotation angles. Although the estimation is accurate
at the beginning and the end, we see that the rotational angle
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Fig. 6. Actual and estimated target shapes for nonelliptical target with one-
step optimization method (δ = 0.1).

estimation becomes poor when the translation estimation is also
inaccurate, giving a maximum estimation error of 25.8◦.

Fig. 6 shows the images of the actual and estimated shapes
for δ = 0.1 The entire shape is roughly estimated, but the
accuracy is lower than that for the elliptical target. This is
because the elliptical model is used for local fitting, although
the target shape is not elliptical. The difference between the
model and the actual target results in lowered accuracy. The
root-mean-square (rms) error is 23.34 mm for the estimation.
Note that the rms error ε is calculated by

ε =

√√√√ 1

NaNobs

Nobs∑
n=1

Na∑
i=1

(
X̂n,i − pn,i

)2

(17)

where X̂n,i = (X̂
(n,i)
0 , Ŷ

(n,i)
0 ) is the point estimated using the

ith antenna at the nth time step and pn,i is the point on the

actual target surface that is closest to the estimated point X̂n,i.
3) Applying Two-Step Optimization: Next, we apply the

two-step optimization method with fixed shape parameters to
the same data for δ = 0.1. The optimum parameters a and b
are estimated using the quasi-Newton method with the initial
values ainit = 0.2 m and binit = 0.2 m. These initial values
have been determined empirically, assuming that the target is
part of a human body. The maximum peak is estimated to be
a = 0.146 m and b = 0.100 m. These estimated values are close
to the actual shape parameters a = 0.15 m and b = 0.10 m, for
the elliptical model with δ = 0. Although the assumed model
is not identical to the ellipse, this algorithm can estimate the
average parameters of a model.

Fig. 7 shows the actual and estimated translational motions
using the two-step optimization method with fixed shape pa-
rameters. The actual and estimated translational orbits almost
overlap, which means that the two-step method with fixed
shape parameters can give a more accurate translation estimate
than the one-step method in this case. Fig. 8 shows the actual
and estimated rotational angles using two-step optimization
with fixed shape parameters. It indicates some improvement

Fig. 7. Actual and estimated translation orbits with the two-step optimization
method with fixed shape parameters (δ = 0.1).

Fig. 8. Actual and estimated rotation angles with the two-step optimization
method with fixed shape parameters (δ = 0.1).

compared with the one-step method in Fig. 5. Fig. 9 shows
the actual and estimated target shapes estimated using the two-
step method with fixed shape parameters. The rms error of the
image is 5.87 mm. The imaging accuracy is much higher than
for the one-step optimization shown in Fig. 6. It can be seen
that the time-averaging effect for estimating a and b is effective
in stabilizing the entire estimating process for both the motion
and shape of a target.

C. Application to a More Distorted Nonelliptical Target

Thus far, we have investigated the one- and two-step opti-
mization methods with fixed shape parameters, applying them
to elliptical and slightly distorted nonelliptical targets. In this
section, we deal with a more distorted nonelliptical target to
determine imaging performance under a more severe condi-
tion. We have confirmed that the one-step method does not
work properly for any nonelliptical target. Consequently, we
apply only the two-step method with fixed and variable shape
parameters.

The assumed target shape is expressed by (16) with δ =
0.3. The optimized shape parameters are a = 0.181 m and
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Fig. 9. Actual and estimated target shapes using two-step optimization
method with fixed shape parameters (δ = 0.1).

Fig. 10. Actual and estimated target shapes using two-step optimization
method with fixed shape parameters for distorted nonelliptical target (δ = 0.3).

b = 0.110 m using the two-step method with fixed shape pa-
rameters. Fig. 10 shows the actual and estimated target shapes
using the two-step method with fixed shape parameters. The im-
age indicates a large error on the left side with no image points
on the right side. The rms error for the image is 27.69 mm.

Next, we apply the two-step method with variable shape
parameters. First, the smoothed ān and b̄n are estimated as the
solid lines shown in Fig. 11. Here, the dashed lines are the
ân and b̂n without smoothing, where M = 56 and σ = 20 ms
have been empirically chosen. These values fluctuate around
the basic shape parameters a = 0.15 m and b = 0.10 m. Fig. 12
shows the final image estimated using the two-step method with
variable shape parameters. Although it has some points with
error on the order of a few centimeters, the error is much smaller
than that in Fig. 10. The rms error of the image is 7.70 mm. This
shows that the two-step method with variable shape parameters
is effective in obtaining an image of a distorted nonelliptical
target. The difference between these two methods lies in the

Fig. 11. Estimated shape parameters ān and b̄n for distorted nonelliptical
target (δ = 0.3).

Fig. 12. Actual and estimated target shapes using two-step optimization
method with variable shape parameters for distorted non-elliptical target
(δ = 0.3).

Fig. 13. Actual and estimated rotation angles for distorted nonelliptical target
(δ = 0.3).

estimation accuracy of the rotational angle. The actual and
estimated rotational angles are shown in Fig. 13, where the
rotation estimated using the two-step method with fixed shape
parameters has a large error for t > 0.05 s, which makes it
difficult to obtain the right side of the target.
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Fig. 14. RMS error of each method for a distorted nonelliptical target with
parameter δ.

TABLE I
CALCULATION TIME FOR EACH PROPOSED METHOD

V. NUMERICAL PERFORMANCE EVALUATION

UNDER VARIOUS CONDITIONS

A. Performance Comparison of the Proposed Methods

Fig. 14 shows the rms error of images produced by the
proposed methods. The target shape is expressed by (16) with
the parameter δ. The figure demonstrates that the two-step op-
timization method with the variable shape parameters gives the
smallest error even for a highly distorted target for δ > 0.1. The
two-step optimization method with the fixed shape parameters
has the best performance for δ = 0 because it assumes that the
target shape is close to the ellipse. There is no plot for the one-
step optimization method for δ ≥ 0.2 because the optimization
process does not converge to produce any images.

Next, we compare the calculation time required for each
optimization method. Table I lists the calculation times using
a single Xeon 2.8-GHz processor. One-step optimization is
the fastest followed by two-step optimization. Considering the
rms errors, there is a tradeoff between the accuracy and the
calculation time for the different methods. Therefore, it is
necessary to determine the most appropriate method of the three
for imaging, depending on the expected actual target shape.

B. Ranging Accuracy and Antenna Intervals Required
for the Proposed Method

Next, we investigate the relationship of imaging accuracy,
array size, and ranging accuracy. Fig. 15 shows the rms error of
images obtained using the two-step method with fixed parame-
ters for different antenna intervals Δx. An elliptical target shape
and motion are assumed to be the same as in Section IV-A.
The rms error values were calculated using a Monte Carlo
simulation. Imaging error was calculated by adding white
Gaussian random components to the simulated range Ri(t)

Fig. 15. Relationship between image error of the two-step optimization
method with fixed parameters and ranging error for various antenna intervals.

Fig. 16. Image generated using the two-step optimization method with fixed
parameters for a time-variable target.

(i = 1, 2, . . . , 5) and applying the proposed method to the data.
It is seen from Fig. 15 that, for our system model with Δx =
0.2 m, a ranging accuracy of 0.023 m is required to obtain
an imaging rms error of less than 0.05 m. Similarly, ranging
accuracies of 0.016, 0.024, and 0.028 m are required to achieve
the same imaging rms error for Δx = 0.1, 0.3, and 0.4 m. This
result indicates that it is advantageous to use longer antenna
intervals to relax the system requirement for a specific ranging
accuracy. However, a general conclusion cannot be drawn from
this result because the actual imaging performance depends
on many other factors such as target shape, translational and
rotational motions, and antenna pattern. The important task now
is to clarify these effects on imaging performance.

C. Application to Time-Variable Target Shape

Finally, we investigate how a time-variable target shape
affects the imaging quality. We assume the distortion param-
eter δ to be time variable as δ(t) = δ0 + ηt with δ0 = −0.25
and η = 1.0 s−1. The target motion and antenna intervals are
assumed to be the same as in the previous sections. The solid
lines in Fig. 16 display the assumed target shape and motion,
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Fig. 17. Experimental site for UWB radar imaging.

where the target shape gradually changes. The estimated image
using the two-step method with fixed parameters is illustrated
in the figure with black dots. It is seen that the image has
severely deteriorated because the proposed method assumes a
fixed rigid target shape that does not match this model. Further
modifications are necessary to apply the proposed method to a
time-variable target like a human body.

VI. PERFORMANCE EVALUATION

USING EXPERIMENTAL DATA

In the previous sections, we studied the applicability of the
proposed method to distorted target shapes. The next step is
to clarify the feasibility of the proposed method for measured
data including the effects of realistic noise. In this section,
we apply the proposed method to experimental data measured
with the UWB system shown in Fig. 17. In this system, an
elliptical cylinder in an anechoic chamber is held with thin bars
on both sides. This cylinder is connected to an electronically
operated rotation actuator. The antennas are scanned rather than
the target itself because the received signals are identical to
those assumed in this paper. Although this experimental setup
is different from the system model explained in Section II, the
measured data are the same as those measured with the assumed
model. Note that this system is set up to simulate 2-D imaging
data. Consequently, the antennas at the top of the figure are
scanned in the direction perpendicular to the target cylinder.

The transmit and receive antennas are located close to each
other and scanned together. The antenna interval da is 10.0 cm,
which causes a systematic error in ranging because the system
model assumes a monostatic antenna configuration in which
da is zero. However, since the antennas are aligned in the
length direction of a cylindrical target, the ranging error Δr can
easily be eliminated using the Pythagorean Theorem given by
r =

√
(r +Δr)2 − (da/2)2, where r denotes the actual range.

These antennas have the UWB property of a 10-dB bandwidth
of 3.0 GHz and a center frequency of 3.7 GHz. The antennas
are ceramic patch antennas with a beamwidth that is wide
enough to cover the target, which is not significantly different
from the system model assumed for the computer simulation.
A wideband impulse of 80.0-ps width is generated by a signal
generator and input to one of the antennas, while the received

Fig. 18. Measured signal with the center antenna with the experimental
system.

signal using the other antenna is amplified and A/D converted
with a sampling oscilloscope. The digitized data are analyzed
by the proposed imaging method.

The target has an elliptical cross section with long and short
axes of a = 0.15 m and b = 0.10 m. The assumed motion is
given by

XT =X0 + vxt (18)

YT =YT0 (19)

and the rotation is given by

φ(t) = φ0 + ωφ (20)

where X0 = −0.1 m, vx = 1.0 m/s, YT0 = 0.435 m, φ0 =
−1.24 rad, and ωφ = 3.5 rad/s. The five antennas are located
at intervals of 0.10 m.

Fig. 18 shows the signals received at the second antenna
(the central one) under the conditions assumed previously. It is
assumed that the signals are received every 5.0 ms. The signal-
to-noise ratio (S/N) of the measurement data after applying the
matched filter was 27.94 dB. First, we extract the peak points
of each waveform to calculate Rk(t). Note that this maximum
detection is not optimal to estimate the delay time unless the fil-
ter is completely matched to the received waveform. At present,
we are not considering the important task of employing a more
accurate ranging technique [17] for this step in our methods.

We now apply the one-step method to the data and find that
the method gives relatively large errors because of the noise
components. Because the noise makes the optimization process
strongly dependent on the initial value, the one-step method can
be applied only to data with a high S/N .

Next, we apply the two-step method with fixed shape param-
eters to the experimental data. The estimated a and b are 0.156
and 0.099 m, respectively. These values are used to estimate
other parameters. Fig. 19 shows the estimated rotational angle
using the two-step method with fixed shape parameters. This
figure shows that the proposed method works well even for
the experimental data, although it does have an error of 5.6◦

at t = 0.16 s and 13.8◦ at the final step t = 0.24 s. Solid lines
in Fig. 20 indicate the actual target shapes move to the right
while rotating counterclockwise. Here, triangle symbols on the
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Fig. 19. Actual and estimated rotation angles for experimental data.

Fig. 20. Target shape estimated by the proposed method for experimental
data.

x-axis show the five antenna positions. An estimated image is
displayed with black dots in Fig. 20 along with the estimated
translation (x0, y0), which shows that the proposed method can
accurately estimate the target shape with measurement data.
The rms error of the image is 5.31 mm, which is small enough
for most surveillance-related applications.

VII. CONCLUSION

We have proposed new imaging methods for UWB radar
using five antennas. The methods use the motion of a target,
including translation and rotation, to obtain a target image by
compensating for the estimated motion. We presented three
methods of optimizing the proposed cost function, the one-step
optimization method, the two-step optimization method with
fixed shape parameters, and the two-step optimization method
with variable shape parameters. The one-step method works
well for an elliptical target and works to some extent for a
slightly distorted nonelliptical target, for which the two-step
method with fixed shape parameters can accurately estimate the
image. These two methods do not work well for a more dis-

Fig. 21. Estimated target shape with the proposed method.

torted nonelliptical target, for which the two-step method with
variable shape parameters works well. The two-step method
with fixed parameters was also applied to experimental data
to demonstrate its performance. Although the measurement
conditions were idealized, assuming only an elliptically shaped
target with simple motion, the proposed method was shown to
be effective even for measured data.

APPENDIX

In this Appendix, we explain a procedure to obtain the foot
perpendicular to the ellipse E from a point P outside the ellipse.
To make the analysis easier, we set the spatial coordinates as
follows: 1) the center of the ellipse is located at the origin, and
2) the long axis of the ellipse is on the x-axis.

The coordinate system is shown in Fig. 21. Let X = (X,Y )
be the position vector of the point P . A point on the ellipse E
is expressed by

v(θ) =

(
a cos θ

b sin θ

)
. (21)

Given the condition for perpendicularity

(X − v(θ)) · ∂

∂θ
v(θ) = 0 (22)

holds. By modifying this equation, we obtain

−aX sin θ + bY cos θ + (a2 − b2) sin θ cos θ = 0. (23)

By introducing a variable τ = sin θ, the equation can be rewrit-
ten as an equation of the fourth degree

A4τ
4 +A3τ

3 +A2τ
2 +A1τ +A0 = 0 (24)

where

A0 = −b2Y 2, (25)
A1 = − 2b(a2 − b2)Y, (26)
A2 = a2X2 + b2Y 2 − (a2 − b2)2, (27)
A3 =2b(a2 − b2)Y, (28)
A4 =(a2 − b2)2. (29)

Using Ferrari’s solution for an equation of the fourth degree,
we analytically obtain four solutions τ1, τ2, τ3, τ4. We choose
a real solution from among them and calculate θ = arcsin(τ)
to obtain θ. If multiple solutions are real numbers, we obtain
multiple values for θ. In this case, we calculate the distance
between v(θ) and X for each solution to find the optimum
solution. In this way, we obtain v(θ) analytically.
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